MICROCHIP

Trust Platform Manifest File Format

Overview

The manifest file format is designed to convey the unique information about a group of secure subsystems, including
unique 1D (e.g., serial number), public keys and certificates. This was primarily developed for CryptoAuthentication™
(currently ATECC508A, ATECC608A and ATECC608B) secure elements. However, it is structured to work for other
secure subsystems as well.

Manifest files provide a way to link an actual Microchip Trust security device to the infrastructure environment that

it needs to connect to. These files are a critical aspect of the Microchip Trust&GO, TrustFLEX and, optionally,
TrustCUSTOM development environments. Whether you connect to an loT cloud, a LoRaWAN® network or,
potentially, any other infrastructure or environment, the manifest file uniquely ties a given device to that environment.

When working with Microchip Trust&GO, TrustFLEX or TrustCUSTOM products, a manifest file will be generated for
a group of devices that are provisioned through the Microchip Just-In-Time provisioning services. Each object entry
in the manifest file is known as a signed secure element and is signed by a Microchip Elliptic Curve Cryptography
(ECC) private key to validate its authenticity. The overall manifest is made of multiple signed secure elements.
Specific information associated with the manufacturer, the secure product device and specific individual device
information are all part of the information associated with a given signed secure element.

The manifest file is available in a secure fashion only to the customer that orders the group of devices. Accessing
these manifest files is part of the development and provisioning flow provided through Microchip. Once provisioning is
completed for a group of products, the manifest file is available for download.

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 1

and its subsidiaries

Table of Contents

(O 0T 1= RSP SRR 1

1. MaNIfESt GENEIALION. ... ittt e e e st e e ettt e e et e e sbe e e e s e e e enneeesnneeenn 3

1.1, Microchip vs. Self-Generated Files...........cooiiiiiiiiii e 3

1.2, Trust&GO vs. TrustFLEX vs. TrusStCUSTOM FileS........coiiiiiiiiiiiiiiiie e e 4

1.3. Prototype vs. Production DevVice Files...........cooiiiiiiiiiii e 4

2. Structure and Format of @ Manifest File...........coooiiiiiiiii e 5

220 I | o1 o T [T i o o SRR 5

2.2, BiNAry ENCOING....co ittt ettt e bttt sar e e bt e e e e nnn e 5

2.3. SecureElementManifest ODJECE..........c.uii i 5

2.4. SignedSecureElement ODJECE...........oiiiiiiiiie et a e 5

2.4.1. SignedSecureElementProtectedHeader Object..........cccovieeiiiiiiriiiiee e 6

2.5, SecureElement ODJECL..........ooiiii e s 6

2.6. ENtityName ODJECL........oooiiiiiiie e e 7

2.7, PUDICIWK ODJECL......eoiiiiiieitee ettt ettt ettt sae e et e e nes 8

2.8. ENCryptedSeCret WK ODJECL........uiiiiiie ettt s e e e e e e snee e e nnneeean 8

2.9, MOAEIINfO ODJECL.o 8

2.9.1. CryptoAuthentication Modellnfo ODJEC...........cooiuiiiiiiiiiiee e 8

29.1.1. CryptoAuthPublicDataElement Object...........cccceveeiiiiiiiieiieeee e 9

3. Manifest File Example and DECOAING.couiiiiiiiiiiii ettt et e e 10

3.1, ManIfEeSt EXAMPIE.......oooiiiieeieeeeeeee et e e e e et e e et e e e e e e aaraeeeeeaares 10

3.2. Decode Python EXAmPIe........coo ittt e e a e e e e e e e e 12

N AV] o] o T o 1] (o Y2 USRS 15

The MICrOChIP WEDSITE. ...ttt et et 16

Product Change Notification SEIVICE.ii i e e e 16

LO10E) (o] 11 1=T g0 o] o] o SO TP OT P UUPRTPI 16

Microchip Devices Code Protection FEAtUre..........uuuieiiiiiiiiiiie et 16

(=T o F= 1 N\ o) i o7 TSP OSPPPRRRRNt 16

LI (o =T 1 F= T T T O PP PP PP OPPPRTI 17

Quality Management SYSTEM...........iiiiiiiiiiie ettt ettt ettt r e 18

Worldwide Sales @nd SEIVICE........cocuiiiiiiiieiii ettt et s e e neee s 19
© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 2

and its subsidiaries

1.1

Manifest Generation

Manifest Generation

The manifest of the TrustFLEX and Trust&GO devices can be generated in two scenarios. One is through the
Microchip Just-In-Time provisioning services (Microchip-generated) and the second one is a custom generation using
the scripts provided (self-generated).

In both cases, the Trust&GO, TrustFLEX and TrustCUSTOM devices will have different information due to differences
in their configuration.

The following sections provide manifest file differences between:

1. Microchip and self-generated files
— Manifest signature
2. Trust&GO and TrustFLEX files
3. Prototype and production device files

Microchip vs. Self-Generated Files

The manifest file format and generation procedures are public information; hence, they can be generated by users.
Due to this nature and when the procedures are followed, there will still be minor differences between Microchip and
self-generated files.

Manifest Signature

In the manifest file, each element is signed to ensure the integrity of the content. For a Microchip-generated manifest
file, the signing operation is performed by Microchip using its Certificate Authority (CA). The corresponding CA
certificate can be downloaded from the Microchip website. This certificate can be used to validate the authenticity of
the Microchip-generated files.

Tip:
* MCHP Manifest Signer Certificates (under Documentation tab)
* Direct link to Download

For a self-generated manifest file, it is not possible to get each element signed by Microchip CA, as users do not
have access to a CA private key. It is required to generate/use a local CA to perform the signature operations. In
this case, the users must share the validation certificate along with the manifest file to others. This enables them to
validate the content before using it further.

The other differences include:
1. Trust&GO — Content remains the same, as the device data are immutable, but signature and verification
certificates are different, as self-generated scripts use their own CA.
2. TrustFLEX
a. Device and signer certificates can be different if custom PKI is selected during resource generation.

b. Slots 1-4, 13-15 vary based on additional key generations as part of resource generation at the user’s
location.

c. Signature and verification certificates are different, as self-generated scripts use their own CA.

The Trust Platform Design Suite provides the required scripts/tools to self-generate the manifest files.

Tip:
* Trust&GO manifest generation scripts
» TrustFLEX manifest generation scripts (with dev key generation)

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 3

and its subsidiaries

https://www.microchip.com/en-us/product/ATECC608B-TNGTLS#document-table
https://ww1.microchip.com/downloads/en/DeviceDoc/ManifestSignerCert-MCHP.zip
https://github.com/MicrochipTech/cryptoauth_trustplatform_designsuite/tree/master/TrustnGO/00_resource_generation
https://github.com/MicrochipTech/cryptoauth_trustplatform_designsuite/tree/master/TrustFLEX/00_resource_generation

1.2

1.3

Manifest Generation

Trust&GO vs. TrustFLEX vs. TrustCUSTOM Files

The manifest files only contain public information of the device, such as its serial number, certificates and slots’ public
information. Depending on the configuration differences, the information in Trust&GO, TrustFLEX and TrustCUSTOM
files varies as follows:

Trust&GO TrustFLEX TrustCUSTOM

« Slot 0 public key information » Slot 0 public key information (immutable) e Custom information
(immutable) + Device and signer certificates signed by due to unique
» Device and signer certificates Microchip or customer CA based on custom configuration
signed by Microchip CA PKI selection
(immutable) + Slot 1-4 public key information
» Slot 13-15 public key information

Certificate Slots in TrustFLEX Devices

When the user opts to create a custom certificate chain on the TrustFLEX device, the factory provisioned certificates
will be overwritten. Trust Platform Design Suite scripts/notebook allow the user to back up default certificates into

a local folder before overwriting custom certificates on the device. However, if the board changes hands after
provisioning, the new user will not have the back-up certificates and will not be able to revert to factory default.

Prototype vs. Production Device Files

Prototype devices are meant to be used in-house for R&D; therefore, these devices do not come with a manifest

file generated in the factory. However, these devices will have the Slot 0 key generated along with the device and
signer certificates generated during factory provisioning. It is required to self-generate the manifest files for prototype
Trust&GO and TrustFLEX devices.

The Trust Platform Design Suite provides the required scripts/tools to self-generate the manifest files.

Tip:
* Trust&GO manifest generation scripts
» TrustFLEX manifest generation scripts (with dev key generation)

For production devices, users can always download the manifest file from the microchipDIRECT portal under their
personal login. These files are available only after devices are provisioned and shipped to the customer.

Figure 1-1. MicrochipDIRECT Manifest Portal

Order Date PO Number Web Order Number Order Status Order Total (USD)

16-Jul-2020 Shipped

Tracking Information
View Tracking Information

Line Status: Invoiced
rrival Date: 16-Jul-2020

Ship Date: 17-Aug-2020

: 20-Aug-2020

hod: TNT Global Express Zone 3 EUR

Part Number: ATECC608A-TFLXTLSU Quantity:

Your Part Number: Unit Price: Reques

Line Totalf Estim,

Download Manifest

Recipient Name{
Tracking Number:
Invoice Number:

© 2022 Microchip Technology Inc.
and its subsidiaries

Family Reference Manual

DS60001759A-page 4

https://github.com/MicrochipTech/cryptoauth_trustplatform_designsuite/tree/master/TrustnGO/00_resource_generation
https://github.com/MicrochipTech/cryptoauth_trustplatform_designsuite/tree/master/TrustFLEX/00_resource_generation

21

2.2

2.3

2.4

Structure and Format of a Manifest File

Structure and Format of a Manifest File

Introduction

The base format is an array of JavaScript Object Notation (JSON) objects. Each object represents a single secure
element and is signed to allow cryptographic verification of its origins. The format is intentionally "flattened" with
common information repeated for each secure element. This is to facilitate parallel processing of manifests and to
allow splitting of entries into smaller manifests, where appropriate.

This format makes use of the JavaScript Object Signing and Encryption (JOSE) set of standards to represent keys
(JSON Web Key — JWK), certificates (x5¢c member in a JWK) and provide signing (JSON Web Signature — JWS).

In the object definitions, member values may be the name of another JSON object or just an example value.

Binary Encoding

JSON has no native binary data format, so a number of string encodings are used to represent binary data
depending on context.

BASE64URL This is a base64 encoding using a URL-safe alphabet, as described in RFC 4648 section 5, with the

trailing padding characters (“=") stripped.

This is the encoding used by the JOSE standards and will be found in the JWS, JWK and JWE
objects used. This is documented in RFC 7515 section 2.

This encoding is also used in a few other non-JOSE members to maintain consistency.

BASE64 This is the standard base64 encoding, as described in RFC 4648 section 4, and includes the trailing
padding characters (“=").

This is used for encoding certificates (JOSE x5¢ members), presumably to more closely match the
common PEM encoding that certificates are often found in.

HEX In some cases, short binary values are expressed as lowercase hex strings. This is to match
convention with how these values are typically seen and worked with.

SecureElementManifest Object
At the top level, the secure element manifest format is a JSON array of SignedSecureElement objects where each

element represents a single secure element.

SignedSecureElement
SignedSecureElement

SignedSecureElement Object
The SignedSecureElement object is a JWS (RFC 7515) object using the Flattened JSON Serialization Syntax
(section 7.2.2).

"payload": BASE64URL (UTF8 (SecureElement))
"protected": BASE64URL (UTF8 (SignedSecureElementProtectedHeader))

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 5
and its subsidiaries

https://tools.ietf.org/html/rfc4648#section-5
https://tools.ietf.org/html/rfc7515#section-2
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515#section-7.2.2

Structure and Format of a Manifest File

"header":
"uniquelId": "0123f1822c38dd7a01"

"signature": BASE64URL (JWS Signature)

RFC 7515 section 7.2.1 provides definitions for the encoding and contents of the JWS members being used in this
object. Below are some quick summaries and additional details about these members and the specific features being
used.

payload An encoded SecureElement object, which is the primary content being signed. All information about the
secure element is contained here.

protected An encoded SignedSecureElementProtectedHeader object, which describes how to verify the signature.

header JWS unprotected header. This object contains the unique ID member repeated from the SecureElement
object in the payload. The unprotected header is not part of the signed data in the JWS; therefore, it
does not need to be encoded and is included to facilitate plain-text searches of the manifest without
needing to decode the payload.

signature The encoded JWS signature of the payload and protected members.

241 SignedSecureElementProtectedHeader Object

The SignedSecureElementProtectedHeader object is a JWS protected header that describes how to verify the
signature. While RFC 7515 section 4.1 lists out the available header members for a JWS, only the ones listed here
will be used.

"alg": "ES256"
"kid": BASE64URL (Subject Key Identfier)
"x5t#S256": BASE64URL (SHA-256 Certificate Thumbprint)

alg Describes the key type used to sign the payload. See RFC 7518 section 3.1. Only public key algorithms
will be used.
kid Encoded Subject Key Identifier (RFC 5280 section 4.2.1.2) of the key used to sign the payload. This is

the BASE64URL encoding of the subject key identifier value, not the full extension. Used to help identify
the key for verification. kid is a free-form field in the JWS standard (see RFC 7515 section 4.1.4), so this
definition applies only to the SignedSecureElement object.

x5t#S256 SHA-256 thumbprint (a.k.a. fingerprint) of the certificate for the public key required to validate the
signature. Like kid, it can also be used to help identify the key for verification. See RFC 7515 section
4.1.8.

25 SecureElement Object

The SecureElement object contains all the information about the secure element.

"version": 1
"model": "ATECC608A"
"partNumber": "ATECC608A-MAHDA-T"
"manufacturer": EntityName
"provisioner": EntityName
"distributer": EntityName
"groupId": "359SCE55NV38H3CB"
"provisioningTimestamp": "2018-01-15T17:22:45.000z"
"uniquelId": "0123£1822c38dd7a01"
"publicKeySet":

"keys": PublicJWK

"encryptedSecretKeySet":
"keys": EncryptedSecretJWK

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 6
and its subsidiaries

https://tools.ietf.org/html/rfc7515#section-7.2.1
https://tools.ietf.org/html/rfc7515#section-4.1
https://tools.ietf.org/html/rfc7518#section-3.1
https://tools.ietf.org/html/rfc5280#section-4.2.1.2
https://tools.ietf.org/html/rfc7515#section-4.1.4
https://tools.ietf.org/html/rfc7515#section-4.1.8
https://tools.ietf.org/html/rfc7515#section-4.1.8

2.6

Structure and Format of a Manifest File

"modelInfo": ModelInfo

version

model

partNumber
manufacturer

provisioner

distributer

groupld

provisioningTimestamp

uniqueld

publicKeySet

encryptedSecretKeySet

modelinfo

EntityName Object

SecureElement object version as an integer. The current version is 1. Subsequent
versions will strive to maintain backwards compatibility with previous versions, where
possible.

Name of the base secure element model. The current options are ATECC508A,
ATECCG608A and ATECC608B from the CryptoAuthentication family.

Complete part number of the provisioned secure element.
An EntityName object that identifies the manufacturer of the secure element.

An EntityName object that identifies who performed the provisioning/programming of the
secure element.

An EntityName object that identifies who distributed the provisioned secure elements.
In many cases, this will be the same entity that generates the manifest data being
described here.

Secure elements may be organized into groups identified by a single ID. If the secure
element is part of a group, this is the unique ID of that set. Group IDs should be globally
unique.

Date and time the secure element was provisioned in UTC. Formatting is per RFC 3339.

Unique identifier for the secure element. For CryptoAuthentication devices, this is the
9-byte device serial number as a lowercase hex string.

An object representing all the public keys (and certificate chains, if available)
corresponding to private keys held by the secure element. This object is a JSON Web
Key Set (JWK Set) per RFC 7517 section 5, where keys are an array of PublicJWK
objects.

An object representing all the secret keys (symmetric keys) and data held by

the secure element that are marked for export. The keys member is an array of
EncryptedSecretJWK objects. Note that an encrypted JWK Set is not used so the
metadata about the individual keys (number and key IDs) can be read without
decrypting.

If additional non-cryptographic information about the secure element needs to be
conveyed, this Modellnfo object may be present with model-specific information.

The EntityName object is used to identify an entity responsible for some part of the secure element. The members
in this object are variable and must be the same as the attributes defined in sections 6.4.1 Organization Name and
6.4.2 Organizational Unit Name of ITU-T X.509 (ISO/IEC 9594-6). While none of the members are required, there

must be at least one.

"organizationName":

"Microchip Technology Inc"

"organizationalUnitName": "Secure Products Group"

organizationName

organizationalUnitName

Name of the entity organization (e.g., company name).

Optional name of a unit within the organization that the entity applies to specifically.

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 7

and its subsidiaries

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc7517#section-5
https://www.itu.int/rec/T-REC-X.520-201610-S

2.7

2.8

2.9

2.9.1

Structure and Format of a Manifest File

PublicJWK Object

This object represents an asymmetric public key and any certificates associated with it. This is a JWK object,
as defined by RFC 7517. Some JWK member specifications are repeated below for easy reference along with
expectations for specific models of secure elements.

The following definition is for elliptic curve public keys, supported by the CryptoAuthentication family of secure
elements.

n kidll . " O n
llkty" g HECH
"erv": "P-256"

"x": BASE64URL (X)
"y": BASE64URL(Y)
"x5¢c": BASE64 (cert)

The following JWK fields required for elliptic curve public keys are defined in RFC 7518 section 6.2.1:

kid Key ID string. It uniquely identifies this key on the secure element. For CryptoAuthentication secure elements,
this will be the slot number of the corresponding private key.

kty Key type. CryptoAuthentication secure elements only support EC public keys, as defined in RFC 7518 section
6.1.

crv For elliptic curve keys, this is the curve name. CryptoAuthentication secure elements only support the P-256
curve, as defined in RFC 7518 section 6.2.1.1.

X For elliptic curve keys, this is the encoded public key X integer, as defined in RFC 7518 section 6.2.1.2.
y For elliptic curve keys, this is the encoded public key Y integer, as defined in RFC 7518 section 6.2.1.3.

x5c If the public key has a certificate associated with it, that certificate will be found at the first position in this array.
Subsequent certificates in the array will be the CA certificates used to validate the previous one. Certificates
will be BASE64 encoded (not BASE64URL) strings of the DER certificate. This is defined in RFC 7517 section

4.7.

EncryptedSecretJWK Object

This object represents a secret key (symmetric key) or secret data in a secure element that is encrypted for the
recipient of the manifest.

Itis a JSON Web Encryption (JWE) object, as defined by RFC 7516. The JWE payload will be the JSON serialization
(not compact serialization) of a JWK object, as defined by RFC 7517, with a key type of octet ("kty":"oct"). See
RFC 7518 section 6.4 for details on the symmetric key JWK. This technique is described in RFC 7517 section 7.

Modelinfo Object

This object holds additional model-specific information about a secure element that is not captured by the other
cryptographic members. It has no specific members, but depends on the model of the secure element.

Currently, only the CryptoAuthentication models (ATECC508A and ATECC608A) have a Modellnfo object defined.

CryptoAuthentication Modellnfo Object

Modellnfo members defined for CryptoAuthentication models (ATECC508A or ATECC608A):

"deviceRevision": "00006002"

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 8

and its subsidiaries

https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518#section-6.2.1
https://tools.ietf.org/html/rfc7518#section-6.1
https://tools.ietf.org/html/rfc7518#section-6.1
https://tools.ietf.org/html/rfc7518#section-6.2.1.1
https://tools.ietf.org/html/rfc7518#section-6.2.1.2
https://tools.ietf.org/html/rfc7518#section-6.2.1.3
https://tools.ietf.org/html/rfc7517#section-4.7
https://tools.ietf.org/html/rfc7517#section-4.7
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7518#section-6.4
https://tools.ietf.org/html/rfc7517#section-7

Structure and Format of a Manifest File

"publicData": CryptoAuthPublicDataElement

deviceRevision The 4-byte device revision number as returned by the Info (Mode = 0x00) command. Encoded
as a lowercase hex string.

publicData An array of CryptoAuthPublicDataElement objects that defines a location and the public data at
that location.

2911 CryptoAuthPublicDataElement Object

This object defines the location and contents of a public data element in CryptoAuthentication secure elements.

"zone": "data"
"slot": 14
"offset": 0

"data": BASEG64URL (data)

zone CryptoAuthentication zone where the data are found. The options are “data” for one of the slots, “otp” for the
OTP zone or “config” for the configuration zone.

slot If the zone is “data”, this is the slot index (0-15) where the data can be found.
offset Byte offset into the zone/slot that the data can be found at.

data Actual data at the location specified by the other members. This data will be BASE64URL encoded (with
padding characters (“=") stripped).

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 9
and its subsidiaries

Manifest File Example and Decoding

Manifest File Example and Decoding

The following subsections provide examples of a manifest file entry, manifest CA certificate and a Python code
example that can be used to decode the manifest file. These files can be downloaded from the Microchip website at
Manifest Example Files. The content of the download file is shown below.

Manifest Files Example

ExampleManifest.json A single element manifest file in json format.
ExampleManifestMCHP_CA.crt An example of a manufacturing CA certificate produced by Microchip.

ExampleManifestDecode.py A Python script that will read the example Manifest json file and decode it into its
respective elements.

Manifest Example

This is an example of a SecureElementManifest object with a single SignedSecureElement entry:

[
{

"payload":
"eyJ2ZXJzaW9uljoxLCJIJtb2R1bCI6IkFURUNDNjA4QSIsInBhcnROAW1iZXIiOiJBVEVDQzYWOEEtTUFIMjIiLCIJtYW512Z
mFjdHVyZXIiOnsib3JInYW5pemF0aWOuTmFtZSI6Ik1lpY3JvY2hpcCBUZWNobm9sb2d5IEluYyIsIm9yZ2FuaXphdGlvbmF
sSVW5pdEShbWUiOiJTZWN1cmUgUHIvZHVjdHMgR3JvdXAifSwicHIvdmlzaW9uZXIiOnsib3JInYW5pemF0aWOuTmFtZSI6T
k1lpY3JvY2hpcCBUZWNobm9sb2d5IEluYyIsIm9yZ2FuaXphdGlvbmFsVW5pdEShbWUiOiJTZWN1cmUgUHJIVZHVjdHMgR3J
vdXAifSwiZGlzdHIpYnVOb3IiOnsib3JInYW5pemF0aWOuTmFtZSI6IklpY3JvY2hpcCBUZWNobm9sb2d5IEluYyIsImOyZ
2FuaXphdGlvbmFsVW5pdES5hbWUiOiJNaWNyb2NoaXAgRGlyZWNOIn0sImdyb3VwSWQiOiIzNT1TQOUINUSWMzhIMONCIiw
icHJIvdmlzaW9uaW5nVGltZXNOYW1wIjoiMjAxXOSOwMSOyNFQxNjozNToyMy40NzNaIiwidW5pcXV1SWQiOiIwMTIzZjE4M
jJIjMzhkZDdhMDEiLCIwdWJIsaWNLZX1TZXQiOnsia2V5cyI6W3sia2lkIjoiMCIsImt0eSI6IkVDIiwiY3J2IjoiUCOyNTY
iLCJ4IjoieDhUUFFrN2glT3ctY2IXNXAtVEU2SVIxSFFTRVRwWUk50YnU3bmwwRm93TSIsInkiOiJ1eDN1UDhBbGOVbThRDb
k5ueUZMN1IwS0taWXhGQ010VVIORTGAzdWhYb29zIiwieDVjIjpbIklJSUISVENDQVP1lZ0F3SUJBZ01RVKN1OGZzdkFwM31
kc25uU2FYd2dnVEFLOMdncWhrak 9QUVFEQWpCUE1TRXdId11EV1FRSORCaAE5hV055YjJOb2FYQWAWR1Z2qYUc1ldmJHOWS51U
0JKYm1NeEtgQWOCZO5WQkFNTULVTnl11WEIwYnlCOmMRYUm9aVzUwYVdOaGRHbHZiaUJUYVdkdVpYSWdSall3TURBZ0Z3MHh
PVEF4TWpReES5qQXdNREJhROE4eUlEUTNNREV5TkRFMk 1EQXdNRm93UmpFaE1COEdBMVVFQ2d3WVRXbGpjbT1qYUdsd01GU
mxZMmh1YjJ4d1loza2dTVzVqTVNFdOh3WURWUVFEREJnd01USXpSakUOTWpKRE1 6aEVSRGRCTURFZ1FWUkZRME13V1RBVEJ
nY3Foa2pPUFFJQkJInZ3Foa2pPUFFNQkJ3TkNBQVRIeEO05Q1R1SGs3RDV4d1lhtbjVNVGI0R29kQk1ST2xFMDF1IN3V1WFFXa
kE3c2Q3ai9BSmFGSnZFSnpaOGhTK2tkQ21tV01SUW1IMV1AwWQzRMTGIWNk tMbzJBd1hqQU1CZ05WSFINQkFMOEVBakFBTUE
OROEXVWREdOVCL3dRRUF3SURpREFkQmAOVKhRNEVGZ1FVcy 9HCVPRNk1BY jd6SCOyMVFVNThPY0VGAVpJIdOh3WURWU BQQ
kJInd0ZvQVUrOX1xRWIyNndiV1INgQODJyRWRzS1Bz0U52d113Q2dZSUtvitkl 6a jBFQXdJRFNBQXdSUUlnTkxUeks1NmI1VV1l
FSGU5WXdxSXM2dVRhbm14Mk 9yQjZoL1FZRHNJT1dzTUNJUUNMMURzbHhnVXU40HhveX1nTVNnTD1YOGxjSDVCej1SQURKY
W1J3Z2i91UUtnPTO0iLCJINSUIDQI1RDQOFhcWdBd01CQWAJUWVRCcW4xWDF6M09sdFpkdGl1pM2F5WGpBS0JnZ3Foa2pPUFFRREF
gQ1BNUOV3SHAZRFZRUUtEQmMhOYVdOeWIyTmOhWEFnVkdWamFHNXZiRz1uZVNCSmJ tTXhLakFvQmdOVkJBTU1JVU55ZVhCM
GJI5QkJkWFIVW1c1MGFXTmhkR2x2Ym1CU2IyOTBJRUSCSURBA01gqQWdGdzB4TORFeUlUUXhPVEF3TURCYUdBOHINRFE1TVR
JeESERTVNREF3TUZvd1R6RWhNQjhHQTFVRUNNd11UV2xqY¥205amFHbHAJR1JIsWTJodWIyeHZaM2tnUlclak1Tb3dLQVI1EV
1FRRERDRkRjbmx3ZEc4Z1FYVjBhR1Z1ZEdsallYUnBiMjRnVTJIsbmJtVnlJRVkyTURBdA1dUQVRCZ2NxaGtqT1BRSUJCZ2d
xaGtgT1BRTUJCAO5DQUFSM1IwRndzbVBuUbVZTOGhiclM2ZjV3REZ1TjFOYVRSWmpDS2FkbOFnNU9DMjFJZGREAG91NzJYN
UZmeHJFV1JzV2h5bUlmWWxWb2RFZHB4ZDZEdF1scW8yWXdaREFPOmMdOVKkhROEJBZ jhFQkFNQOFZWXdFZ11EV1IwWVEFRSCO
COWd30mdFQi 93SUJBREFkQmAOVKhRNEVGZ1FVKz15cUVvcjZ3Y1dTajgyckVkcOpQczl0dnZZd0h3WURWUjBqQkJInd0ZvQ
VV1dTES5YmNhM2VKMn1PQUdsNkVXTXNLUU9Lb3d3Q2dZSUtviwk1l 6a jBFQXdJRFNRQXdSZ010QU1Zzd011bXBpekJPYUgOR3h
UbDVLclY2WEFGTk1CZmUzTko5MVIzTmhqZi 9BaUVBeHFJc2JyR3VYNFdSU2NOZDUzZUxvLO1MN1QyYmdHK1V2ejJRcF1SN
F1lkdz0iXX0seyJraWQiOiIxIiwia3R5IjoiRUMiLCJjcnYiOiJQLTIINiIsIngiOiIyT2huZT12MGFUUONkclpObVh2dE9
XaXI1RVRnUmhudmVjSkRYUEh6RnNBnIiwieSI6ImhjUDkxQ01UQUt2amR6N19pT1dPNDZnNXVQalJ2Smt1dVFENIRIY2tGL
UEifSx7ImtpZCI6IjIiLCIrdHkiOiJFQyIsImNydiI6I1AtMjU2IiwieCI6IkVFRXhpUmYWVEJYd1BrTGloS1ZSAGVTWTN
oVS1JR1RMbFVPLUZSTUpaRmciLCJ5IjoiTnVib2F3NFdfYTNLd2kwbFZ1Rz1wNGgOMkkObTd2bUs1UDQ5U1B1YkZ2TSJ9L
Hsia2lkIjoiMyIsImtO0eSI6IkVDIiwiY3J2IjoiUCOyNTYiLCJ4IjoiaktCOERrY2klRXhSemcwcXREZEFqcFJJSFNoeFl
PTjgyWVoyLWhhamVuWSIsInkiOiJOWU1KOUROYkNONkSwbmoyZzQzQWhrMnB4UXU5S1JkTXkzbTBmLUpfclJFInOseyJra
WQiOiIOIiwia3R5IjoiRUMiLCJIjcnYiOiJQLTIINiIsIngiOiJMVFUwWSUdoM31tQXpXbFdtWjg0ZmhYN11rQjRaQ21tbFY
tWUOORHREYURVIiwieSI6ImMN2TnIyVEPEV1IhmNFhPN1B6eWJSV29FY1FMVDRGMOS5WUDhZajItWDhxYncifV19£fQ",

"protected":
"eyJ0eXAiO0iJKV1QiLCJhbGciOiJFUzIINiIsImtpZCI6IjdjQO01MbEFPd11vMS1Q02hHAWI5VUITTUszZyIsIngldCNTM
jU2IjoiVEVjNDZTVDJISREZfQU920nRvQ11hODM4V1dJUGZOV18yalRxTmEOajVSNCJI9",

"header": {

"uniquelId": "0123£1822c38dd7a01"

} 4

"signature": "7btSLIbS3Yoc6yMckm7Moceis PNsFbNJ6iktVK186IuxZ6cU_y-
VZuLSgLCstMs4 EBFpvsyFy71j5rM9oMDw"

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 10
and its subsidiaries

https://ww1.microchip.com/downloads/en/DeviceDoc/ManifestExampleFiles.zip

Manifest File Example and Decoding

Decoding the protected member gives the following SignedSecureElementProtectedHeader:

{
neyp": "JWI",
"alg": "ES256",
"kid": "7cCIL1AOwYol-PChGuoyUISMK3g",
"x5t#S256": "TEC46ST2RDF_AOVBtoCYa838VWIPENV_2jTqNadj5R4"

Decoding the payload member gives the following SecureElement:

"version": 1,
"model": "ATECC608A",
"partNumber": "ATECC608A-MAH22",
"manufacturer": {
"organizationName": "Microchip Technology Inc'",
"organizationalUnitName": "Secure Products Group'
b,
"provisioner": {
"organizationName": "Microchip Technology Inc",
"organizationalUnitName": "Secure Products Group"
}!
"distributor": {
"organizationName": "Microchip Technology Inc",
"organizationalUnitName": "Microchip Direct"
}!
"groupId": "359SCE55NV38H3CB",
"provisioningTimestamp": "2019-01-24T16:35:23.4732",
"uniqueId": "0123£1822c38dd7a0l",
"publicKeySet": {
"keys": [
{

llkidll g lloll ,

llktyll g IIECII ,

"erv": "P-256" ,

"x": "x8TPQk7h50w-cbl5p-TE6IRGHQSETpRNNbu7nl10FowM" ,
"y": "ux3uP8AloUm8OnNnyFL6ROKKZYxFCItU QLgsuhXoos",
"x5c¢c": |

"MIIBO9TCCAZugAwIBAgIQVCu8fsvAp3ydsnnSaXwggTAKBggghk jOPQODAjBPMSEwHwWYDVQQOKDBhNaWNyb2NoaXAgVGVija
G5vbG9neSBJIbmMxKjAoBgNVBAMMIUNyeXBObyBBdXRoZW50aWNhdG1lvbiBTaWduZXIgRjYwMDAgFwOxOTAXxMjQxNjAwWMDB
aGA8yMDQ3MDEyNDE2MDAWMFowRJEhMB8GA1UECgWYTW1jcm9jaGlwIFR1Y2hub2xvZ3kgSW5jMSEwHwWYDVQQODDBgwMTIzR
jE4M3j JDMzhERDABMDEgQVRFQOMWWTATBgcghk jOPQIBBggghk jOPQMBBWNCAATHXMICTuHk 7D5xvXmn5MTohGodBIROLEQ
lu7ueXQWjA7sd7j/AJaFIvEJzZ8hS+kdCimWMRQiLVPOC4LLOV6KLo2AwX jAMBgNVHRMBAf8EAJAAMA4GA1UdDWEB/
wQEAwIDiDAJBgNVHQ4EFgQUs/GqZQ6MAb7zH/

r1Qo580cEFuZIwWHWYDVRO jBBgwFoAU+9yqEor 6WbWSj82rEdsJPsINvvYWCgYIKoZIzjOEAWIDSAAWRQIgGNLTzK56b5UYE
He9YwqIs6uTanmx20rB6h/QYDsIOWsSMCIQCL1Ds1xgUu88xoyygMSgL9X81cH5Bz9RADJamI £ /uQKg==",

"MIICBTCCAaqgAwIBAgIQeQqnlX1z301ltZdtmi3ayXjAKBggghk jOPQODAjBPMSEwHWYDVQQOKDBhNaWNyb2NoaXAgVGVija
G5vbG9neSBJbmMxKjAoBgNVBAMMIUNyeXBObyBBdXRoZW50aWNhdG1lvbiBSb2 90 IENBIDAWMjAgFw0xODEYMTQxOTAWMDB
aGA8yMDQ5MT IxNDESMDAwWMFowTzEhMB8GA1UECgWYTW1jcm9jaGlwIFR1Y2hub2xvZ3kgSW5jMSowKAYDVQQODDCFDcnlwd
G8gQXV0aGVudGljYXRpb24gU21nbmVyIEY2MDAWWTATBgcghk jOPQIBBggghk jOPQMBBWNCAAR2ROFwsmPnmVS8hbsS6£5
wDFuN1NaTRZjCKadoAg50C21IddDtoe72X5FfxrEWRsWhymMfY1VodEdpxd6DtY1qo2YwZDAOBgNVHQ8BAf8EBAMCAYYWE
gYDVROTAQH/BAgwWBgEB/
wIBADAdJBgNVHQ4EFgQU+9ygEor6wbWSj82rEdsJPs OINvvYwHwWYDVRO jBBgwFoAUeul 9bca3eJ2yOAGl 6EGMsKQOKowwCgY
IKoZIzjOEAwWIDSQAWRgIhAMYwMempizBOaH4GxT15KsV6XAFNMBfe3NJ91R3Nhjf/AiEAXqIsbrGuX4WRSctd53elo/
ML6T2bgG+Uvz2QpYR4Ydw="
1
} 4
{

llkidll g "1" ,

"kty": "EC",

"crv": "P-256",

"x": "20hne9%v0aTSCAdrZNmXvtOWir5ETgRhnvecJDXPHzFpg",

"y": "hcP91CMTAKvjdz6_ iNWO46g5uPjRvJkuuQ 6THckF-A"

llkidll : "2" ,
llktyll : "EC" ,
"crv": "P-256",

"x": "EEExiRf0TBXwPkLihJVRteSY3hU-IGTL1UO-FRMJZFg",

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 11

and its subsidiaries

Manifest File Example and Decoding

"y": "Nuboawd4W_a3Kwi0lVeG9p4h42I4m7vmK5P49SPebFvM"

llkidll : ll3ll ,
llktyll : "EC" ,
"crv": "P-256",

"x": "jKB8DkciS5ExRzgOqtDdAjpRIHShxYON82YZ2-hajenY",
"y": "NYMJ9DtbCt60pnj2g43Ahk2pxQu9KRdMy3m0£f-J rRE"

llkidll g ll4ll ,

"kty": "EC",

"crv": "P-256",

"x": "LTUOIGh3ymAzW1WmZ84fhX7YkB4ZCmmlV-YONDtDaDU",
"y": "cvNr2TJIDWXf4XO6PzybRWOECQLT4F3NVP8Yj2-X8gbw"

MIIBxjCCAWygAwIBAGIQZGIWYMZI9cMcBZipXxTOWDAKBggghkjOPQQDAJASMSEW
HwYDVQQKDBhNaWNyb2NoaXAgVGV]jaG5vbGIne SBIbmMxFzAVBgGNVBAMMDkxvZyBT
aWduZXIgMDAXMBA4XDTESMDEyMj AwMj cOM10XDTE5SMDcyMj AwMj cOM1owPDEhMBSG
AlUECgwYTW1jcm9jaGlwIFR1Y2hub2xvZ3kgSW5IMRcwFQYDVQQODDASMb2cgU21n
bmVyIDAWMTBZMBMGByqGSM4 9AgEGCCOGSM4 9AWEHAOIABEU8/Z2yRATudNOkuu76C
R1JR5vz04EuRgL4TQOxMinRiUc3Htqy3806HrXo2qmNoyrO0xd2I2pfQhXWYuLT35
MGWJjUDBOMBOGA1UdDgQWBBTtwIguUA7B1jX48KEa6]jJQhIwreDAfBgNVHSMEGDAW
gBTtwIguUA7BijX48KEa6jJQhIwreDAMBgNVHRMBAf8EAJAAMAOGCCOGSM4 9BAMC
AQgAMEUCIQDY/x9zxmHkeWGw]EQ670sQgBVMOY8k6PVEVr4Bz1ltYOwIgYfck+£fv/
pno8+2vVTkQDhcinNrgoPLQORzV5/1/bdz4=

===IEND CIERTTEILCANT====o

3.2 Decode Python Example

This is a Python script example for verifying the signed entries and decoding the contents. The script is tested on
Python 2.7 and Python 3.7. Required packages can be installed with the Python package manager pip:

pip install python-jose[cryptography]

HEHHEHEHEHE R

(c) 2019 Microchip Technology Inc. and its subsidiaries.

Subject to your compliance with these terms, you may use Microchip software
and any derivatives exclusively with Microchip products. It is your
responsibility to comply with third party license terms applicable to your
use of third party software (including open source software) that may
accompany Microchip software.

THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT,
SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE
OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF
MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE
FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL
LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED
THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THIS SOFTWARE.

import json

from base64 import b64decode, bl6encode

from argparse import ArgumentParser

import jose.]jws

from jose.utils import base64url_decode, baseé6durl_encode

from cryptography import x509

from cryptography.hazmat. backends import default backend

from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric import ec

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 12

and its subsidiaries

Manifest File Example and Decoding

parser = ArgumentParser (
description='Verify and decode secure element manifest'
)
parser.add_argument (
'--manifest',
help='Manifest file to process',
nargs=1,
type=str,
required=True,
metavar='file'
)
parser.add_argument (
'--cert',
help='Verification certificate file in PEM format',
nargs=1,
type=str,
required=True,
metavar='file'
)

args = parser.parse_args ()

List out allowed verification algorithms for the JWS. Only allows
public-key based ones.
verification algorithms = [
'RS256', 'RS384', 'RS512', 'ES256', 'ES384', 'ES512'
1

Load manifest as JSON
with open(args.manifest[0], 'rb') as £f:
manifest = json.load(f)

Load verification certificate in PEM format
with open(args.cert[0], 'rb') as f:
verification cert = x509.load pem x509 certificate(
data=f.read(),
backend=default backend()
)

Convert verification certificate public key to PEM format

verification public_key pem = verification cert.public key () .public bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo

) .decode ('ascii')

Get the base64url encoded subject key identifier for the verification cert
ski_ext = verification cert.extensions.get extension for class(
extclass=x509.SubjectKeyIdentifier
)
verification cert kid bé64 = base64url_encode (
ski_ext.value.digest
) .decode ('ascii')

Get the base64url encoded sha-256 thumbprint for the verification cert

verification_cert x5t _s256_b64 = base64url_encode (
verification_cert.fingerprint (hashes.SHA256())

) .decode ('ascii')

Process all the entries in the manifest
for i, signed se in enumerate (manifest):
print('")
print('Processing entry {} of {}:'.format(i+l, len(manifest)))
print ('uniqueld: {}'.format(
signed se['header']['uniqueId']
))
Decode the protected header
protected = json.loads (
base64url_decode (
signed se|'protected'].encode('ascii')
)
)

if protected|'kid'] != verification_cert kid bé64:
raise ValueError('kid does not match certificate value')
if protected|'x5t#5256'] != verification cert x5t s256 b64:

raise ValueError ('x5t#S256 does not match certificate value')

© 2022 Microchip Technology Inc. Family Reference Manual
and its subsidiaries

DS60001759A-page 13

Manifest File Example and Decoding

Convert JWS to compact form as required by python-jose
jws_compact = '.'.join([

signed se|'protected'],

signed se|['payload'],

signed:se[‘signature‘]

1)

Verify and decode the payload. If verification fails an except
be raised.
se = json.loads(
jose.jws.verify(
token=jws_compact,
key=verification_public_key pem,
algorithms=verification_algorithms
)
)
if se['uniqueld'] != signed se['header']['uniqueId']:
raise ValueError/(
(
'uniquelId in header "{}" does not match version in'
' payload "{}"'
) .format (
signed se['header']['uniqueId'],
se['uniqueld']
)

)
print('Verified')

print ('SecureElement = ')
print (json.dumps (se, indent=2))

Decode public keys and certificates
try:
public_keys = se['publicKeySet']['keys']
except KeyError:
public_keys = []
for jwk in public_keys:
print ('Public key in slot {}:'.format(int(jwk['kid'])))
if jwk['kty'] != 'EC':
raise ValueError (
'Unsupported {}'.format(json.dumps({'kty': jwk['kty'
)
if jwk['crv'] != 'P-256"':
raise ValueError (
'Unsupported {}'.format(json.dumps({'crv': jwk['crv'
)
Decode x and y integers
Using int.from bytes() would be more efficient in python 3
x = int(
bléencode (base64url decode (jwk['x'] .encode('utfs8'))),
16

= int(
bléencode (base64url_decode (jwk|['y'] .encode('utfs8'))),
16

o

)

public_key = ec.EllipticCurvePublicNumbers (
curve=ec.SECP256R1 () ,
X=X,
Y=y

) .public_key (default backend())

print (public_key.public_ bytes (
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo

) .decode ('ascii'))

Decode any available certificates
for cert b64 in jwk.get('x5c', []):
cert = x509.1cad der x509 certificate(
data=bé4decode (cert bé4) ,
backend=default backend()
)
print (cert.public bytes(
encoding=serialization.Encoding.PEM
) .decode ('ascii'))

jon will

+

1)

1)

© 2022 Microchip Technology Inc. Family Reference Manual
and its subsidiaries

DS60001759A-page 14

4.

Revision History

Revision History

Doern——ome —omsepion

A 02/2022 Initial release of this document

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 15
and its subsidiaries

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is secure when used in the intended manner, within operating
specifications, and under normal conditions.

» Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test,

and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 16
and its subsidiaries

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeelLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB,
OptolLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron,
and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the
US.A

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime,
IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity,
JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-
ICE, Serial Quad 1/0, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher,
SuperSwitcher Il, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-5224-9757-8

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 17
and its subsidiaries

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 18
and its subsidiaries

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office Australia - Sydney India - Bangalore Austria - Wels

2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39
Chandler, AZ 85224-6199 China - Beijing India - New Delhi Fax: 43-7242-2244-393
Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen
Fax: 480-792-7277 China - Chengdu India - Pune Tel: 45-4485-5910
Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829
www.microchip.com/support China - Chonggqing Japan - Osaka Finland - Espoo

Web Address: Tel: 86-23-8980-9588 Tel: 81-6-6152-7160 Tel: 358-9-4520-820
www.microchip.com China - Dongguan Japan - Tokyo France - Paris
Atlanta Tel: 86-769-8702-9880 Tel: 81-3-6880- 3770 Tel: 33-1-69-53-63-20
Duluth, GA China - Guangzhou Korea - Daegu Fax: 33-1-69-30-90-79
Tel: 678-957-9614 Tel: 86-20-8755-8029 Tel: 82-53-744-4301 Germany - Garching
Fax: 678-957-1455 China - Hangzhou Korea - Seoul Tel: 49-8931-9700
Austin, TX Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Germany - Haan

Tel: 512-257-3370 China - Hong Kong SAR Malaysia - Kuala Lumpur Tel: 49-2129-3766400
Boston Tel: 852-2943-5100 Tel: 60-3-7651-7906 Germany - Heilbronn
Westborough, MA China - Nanjing Malaysia - Penang Tel: 49-7131-72400
Tel: 774-760-0087 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Germany - Karlsruhe
Fax: 774-760-0088 China - Qingdao Philippines - Manila Tel: 49-721-625370
Chicago Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Germany - Munich
ltasca, IL China - Shanghai Singapore Tel: 49-89-627-144-0
Tel: 630-285-0071 Tel: 86-21-3326-8000 Tel: 65-6334-8870 Fax: 49-89-627-144-44
Fax: 630-285-0075 China - Shenyang Taiwan - Hsin Chu Germany - Rosenheim
Dallas Tel: 86-24-2334-2829 Tel: 886-3-577-8366 Tel: 49-8031-354-560
Addison, TX China - Shenzhen Taiwan - Kaohsiung Israel - Ra’anana

Tel: 972-818-7423 Tel: 86-755-8864-2200 Tel: 886-7-213-7830 Tel: 972-9-744-7705
Fax: 972-818-2924 China - Suzhou Taiwan - Taipei Italy - Milan

Detroit Tel: 86-186-6233-1526 Tel: 886-2-2508-8600 Tel: 39-0331-742611
Novi, Ml China - Wuhan Thailand - Bangkok Fax: 39-0331-466781
Tel: 248-848-4000 Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Italy - Padova
Houston, TX China - Xian Vietnam - Ho Chi Minh Tel: 39-049-7625286
Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Netherlands - Drunen
Indianapolis China - Xiamen Tel: 31-416-690399
Noblesville, IN Tel: 86-592-2388138 Fax: 31-416-690340
Tel: 317-773-8323 China - Zhuhai Norway - Trondheim
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388

Tel: 317-536-2380 Poland - Warsaw

Los Angeles Tel: 48-22-3325737
Mission Viejo, CA Romania - Bucharest
Tel: 949-462-9523 Tel: 40-21-407-87-50
Fax: 949-462-9608 Spain - Madrid

Tel: 951-273-7800 Tel: 34-91-708-08-90
Raleigh, NC Fax: 34-91-708-08-91
Tel: 919-844-7510 Sweden - Gothenberg
New York, NY Tel: 46-31-704-60-40
Tel: 631-435-6000 Sweden - Stockholm
San Jose, CA Tel: 46-8-5090-4654
Tel: 408-735-9110 UK - Wokingham

Tel: 408-436-4270 Tel: 44-118-921-5800
Canada - Toronto Fax: 44-118-921-5820

Tel: 905-695-1980
Fax: 905-695-2078

© 2022 Microchip Technology Inc. Family Reference Manual DS60001759A-page 19
and its subsidiaries

http://www.microchip.com/support
http://www.microchip.com

	Overview
	Table of Contents
	1. Manifest Generation
	1.1. Microchip vs. Self-Generated Files
	1.2. Trust&GO vs. TrustFLEX vs. TrustCUSTOM Files
	1.3. Prototype vs. Production Device Files

	2. Structure and Format of a Manifest File
	2.1. Introduction
	2.2. Binary Encoding
	2.3. SecureElementManifest Object
	2.4. SignedSecureElement Object
	2.4.1. SignedSecureElementProtectedHeader Object

	2.5. SecureElement Object
	2.6. EntityName Object
	2.7. PublicJWK Object
	2.8. EncryptedSecretJWK Object
	2.9. ModelInfo Object
	2.9.1. CryptoAuthentication ModelInfo Object
	2.9.1.1. CryptoAuthPublicDataElement Object

	3. Manifest File Example and Decoding
	3.1. Manifest Example
	3.2. Decode Python Example

	4. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

