REV	CHANGE DESCRIPTION	NAME	DATE
А	Release		5-08-13

Any assistance, services, comments, information, or suggestions provided by SMSC (including without limitation any comments to the effect that the Company's product designs do not require any changes) (collectively, "SMSC Feedback") are provided solely for the purpose of assisting the Company in the Company's attempt to optimize compatibility of the Company's product designs with certain SMSC products. SMSC does not promise that such compatibility optimization will actually be achieved. Circuit diagrams utilizing SMSC products are included as a means of illustrating typical applications; consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice.

DOCUMENT DESCRIPTION

Component Placement Checklist for the LAN8810, 72-pin QFN Package

CC524368	Α
Document Number	Revision
80 Arkay Drive, Suite 100 Hauppauge, New York 11788	
SMSC	

Component Placement Checklist for LAN8810

Information Particular for the 72-pin QFN Package

LAN8810 QFN Phy Interface:

- 1. Place the 49.9 Ω termination pull-up (TR0P, pin 58) as close to the LAN8810 as possible.
- 2. Place the 49.9 Ω termination pull-up (TR0N, pin 57) as close to the LAN8810 as possible.
- 3. Place the 49.9 Ω termination pull-up (TR1P, pin 61) as close to the LAN8810 as possible.
- 4. Place the 49.9 Ω termination pull-up (TR1N, pin 60) as close to the LAN8810 as possible.
- 5. Place the 49.9 Ω termination pull-up (TR2P, pin 66) as close to the LAN8810 as possible.
- 6. Place the 49.9 Ω termination pull-up (TR2N, pin 65) as close to the LAN8810 as possible.
- 7. Place the 49.9 Ω termination pull-up (TR3P, pin 69) as close to the LAN8810 as possible.
- 8. Place the 49.9 Ω termination pull-up (TR3N, pin 68) as close to the LAN8810 as possible.
- 9. All the components discussed in this section should be considered critical components. To ensure the best signal integrity and good EMI performance, these critical components should be placed on the component side of the PCB. This will ensure that these components will be referenced to a contiguous ground plane reference on Layer 2 of the design.

LAN8810 QFN Magnetics:

- Place the 0.022 μF Center Tap termination capacitors as close to the magnetics as
 possible. This capacitor should be considered a critical component. To ensure the best
 signal integrity and good EMI performance, this critical component should be placed on
 the component side of the PCB. This will ensure that this component will be referenced to
 a contiguous ground plane reference on Layer 2 of the design.
- 2. Place the four 75 Ω cable side center tap termination resistors and the 1000 ρ F, 2KV capacitor ($C_{magterm}$) cap as close to the magnetics as possible. These components may be considered non-critical components. These components make up part of the high voltage barrier for the Ethernet front end. The best location for these components is typically on the solder side of the PCB. They should be placed such that none of the resultant routing crosses the differential pairs. These components have both ESD and EMI implications.

RJ45 Connector:

- 1. Place the RJ45 connector, the magnetics and the LAN8810 QFN as close together as possible.
- 2. If No. 1 is not possible, keep the RJ45 connector and the magnetics as close as possible. This will allow remote placement of the LAN8810 QFN.
- 3. The distance from the RJ45 connector to the magnetics should be 0.50" at a minimum and 0.75" at a maximum.
- 4. The distance from the magnetics to the LAN8810 should be 1.0" at a minimum and 3.0" at a maximum.
- 5. Select and place the magnetics as to set up the best routing scheme from the LAN8810 QFN to the magnetics to the RJ45 connector. There are many styles and sizes of magnetics with different pin outs to facilitate this operation. Investigate Tab-Up & Tab-Down RJ45 connectors in order to facilitate layout.
- 6. Make sure to not place any other components in or near the TX Channel & RX Channel lanes of the PCB. These lanes should be clear of any other signals and components.

VDDVARIO Power Supply Connections:

- 1. Place the (6) VDDVARIO decoupling capacitors for the LAN8810 QFN as close to the power pin as possible. Using an SMD_0402 package will make this task easier.
- Decoupling capacitors, in general, are best placed on the component side of the PCB.
 This should allow the board designer to minimize the use of vias and provide a short, direct copper connection from the capacitor to the power pin.

+1.2V Power Supply Connections:

- 1. Place the (6) VDD12CORE decoupling capacitors for the LAN8810 QFN as close to the power pin as possible. Using an SMD 0402 package will make this task easier.
- 2. Place the (4) VDD12A decoupling capacitors for the LAN8810 QFN as close to the power pin as possible. Using an SMD_0402 package will make this task easier.
- 3. Place the single VDD12BIAS decoupling capacitor for the LAN8810 QFN as close to the power pin as possible. Using an SMD_0402 package will make this task easier.
- 4. Place the single VDD12PLL decoupling capacitors for the LAN8810 QFN as close to the power pin as possible. Using an SMD_0402 package will make this task easier.
- 5. Decoupling capacitors, in general, are best placed on the component side of the PCB. This should allow the board designer to minimize the use of vias and provide a short, direct copper connection from the capacitor to the power pin.

Ground Connections:

1. There are no component placement issues associated with the LAN8810 QFN ground connections. The LAN8810 has an Exposed Die Paddle ground connection on the package bottom. Since the PCB design has an all encompassing digital ground plane, the ground plane connections will automatically be as short as possible.

Crystal Connections:

- 1. Place the 25.000 MHz crystal and the associated 27 33 pF capacitors as close together as possible and as close to the LAN8810 QFN (XI, pin 4 & XO, pin 5) as possible. They should form a tight loop. Keep the crystal circuitry away from any other sensitive circuitry (address lines, data lines, Ethernet traces, etc.).
- 2. The crystal and associated components should be located within 0.25" of the LAN8810.
- 3. Place all the crystal components on the component side of the PCB with a digital ground plane layer on the next layer. This will minimize vias in the circuit connections and assure that all crystal components are referenced to the same reference plane.

ETHRBIAS Resistor:

- 1. Place the ETHRBIAS resistor as close to pin 54 of the LAN8810 QFN as possible.
- 2. The RBIAS resistor should be considered a critical component. This critical component should be placed on the component side of the PCB. This will ensure that this component will be referenced to a contiguous ground plane reference on Layer 2 of the design.

Required External Pull-ups/Pull-downs:

1. Typically, there are no component placement issues associated with the LAN8810 QFN External Pull-up connections.

GMII Interface:

- When physically placing the LAN8810 in an GMII / MII application, the designer should be aware of the relative trace lengths determined by the relationship of the Phy and the MAC in the application. By placing the MAC too far away from the LAN8810, this may result in operational problems associated with excessive trace lengths.
- 2. The designer has some latitude in the placement of the LAN8810 with respect to the magnetics. This should allow for some adjustment on the Phy-to-MAC GMII / MII interface, should this be necessary. By moving the Phy farther away from the magnetics, the MII interface can be shortened.
- 3. SMSC recommends the final GMII / MII interface trace lengths to remain under 6" long.

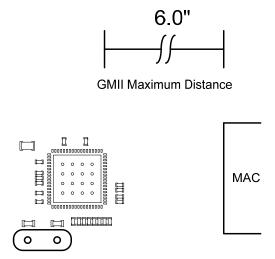


Figure No. 1

GMII / MII Series Terminations:

- 1. If the designer has elected to use impedance matching terminations in his design, these series resistors should be placed as close as possible to the source of the driving signal.
- 2. The GMII / MII Series Terminations should be considered critical components. To ensure the best signal integrity and good EMI performance, these critical components should be placed on the component side of the PCB. This will ensure that these components will be referenced to a contiguous ground plane reference on Layer 2 of the design. This will also minimize the use of vias in routing these signals.

CONFIG[3..0] Pins:

1. There are no component placement issues associated with the LAN8810 CONFIG[3..0] pins.

LED Pins:

1. There are no component placement issues associated with the LAN8810 LED pins.

Dedicated Configuration Strap Pins:

1. There are no component placement issues associated with the LAN8810 dedicated configuration strap pins.

Miscellaneous:

- Place the SMD_1210 Digital Ground / Chassis Ground shorting resistor near the RJ45 in a logical place to short the two planes. Typically, this component is placed on the back of the PCB. This component has both ESD and EMI implications.
- 2. Bulk capacitors for each power plane can reside anywhere on the plane they serve.

