

AN 12.19

Designing For LAN9118 Family Footprint Compatibility

1 Introduction

This application note will discuss forward and backward footprint compatibility among the LAN9118 family of Ethernet controllers. Various external component placement strap possibilities supporting configuration of the Ethernet controller will also be discussed.

1.1 References

All references can be found at SMSC's web site: www.smsc.com

- SMSC LAN9118 Family of datasheets
- Application Note 8.13: Suggested Magnetics an813.pdf
- Application Note 12.5: Designing with the LAN9118 Getting Started an125.pdf
- Application Note 12.12: LAN9118 Family Programmers Reference Guide an1212.pdf
- Reference Design Files
- LAN9118 Reference Design Schematic 9118sch.pdf
- LAN9118 Reference Design Bill of Materials 9118bom.pdf

2 The LAN9118 Family of Ethernet Controllers

The LAN9118 family of Ethernet controllers offer a high-performance, cost competitive solution for most embedded applications requiring Ethernet LAN connectivity. The LAN9118 family of Ethernet Controllers include the LAN9115, LAN9116, LAN9117 and LAN9118. Table 2.1, "LAN9118 Family Comparison", describes the basic feature differences between each family member. As shown, the LAN9118 and LAN9116 support both 16-bit and 32-bit Host Bus architectures.

The LAN9117 and LAN9115 are 16-bit devices. Pins assigned to the upper 16 data bits in the LAN9118 and LAN9116 devices support an external MII interface in the LAN9117 and LAN9115 devices. The external MII feature allows the LAN9117 and LAN9115 devices to support an external PHY. It is important to remember, however, that even though the bus width supported by the LAN9118 family of Ethernet controllers varies externally, the internal bus architecture of all the devices is 32-bits.

Please refer to SMSC's web site (www.smsc.com) for additional information on the differences between each device that would suit a particular application.

Table 2.1 LAN9118 Family Comparison

SMSC LAN DEVICE	COMMENT	
LAN9118	32-/16-bit Selectable	
LAN9117	16-Bit Only External MII Selectable	
LAN9116	32-/16-bit Selectable	
LAN9115	16-bit Only External MII Selectable	

3 Configuration options

The LAN9118 family of Ethernet controllers utilize pins for device configuration. Table 3.1, "LAN9118 Family Configuration Pins" denotes the applicable configuration pins.

Note: As shown in the table, some pins are multi-function.

For a complete description of the device pins defined, please refer to the LAN9118, LAN9117, LAN9116 or LAN9115 datasheets available on SMSC's web site outlined in the reference section above.

Table 3.1 LAN9118 Family Configuration Pins

	DEVICE PINS USED FOR CONFIGURATION				
SMSC LAN DEVICE	SPEED_SEL	FIFO_SEL	EEDIO/ GPO3/ TX_EN/ TX_CLK/ (D32/nD16)	MDIO (EXT_PHY_DET)	
LAN9118	✓	✓	✓		
LAN9117	✓	✓		✓	
LAN9116	✓	✓	✓		
LAN9115	✓	✓		✓	

The LAN9118 family reference schematic shown in Figure 3.1 depicts a typical device application. This schematic describes configuration strap options for the full family of LAN9118 Ethernet controllers using the pins defined in Table 3.1.

Note 3.1 It is important to note that this schematic specifically captures a LAN9118 implementation that is compatible with all members of the LAN9118 family of Ethernet controllers.

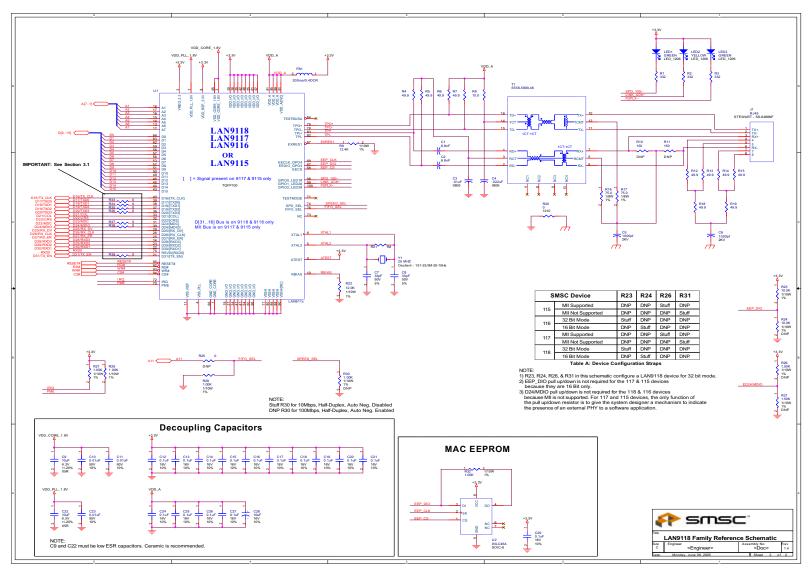


Figure 3.1 LAN9118 Family Reference Schematic

3.1 Migration Between LAN9118/116 and LAN9117/115

PCB footprints for R33 - R39 in Figure 3.1 are only necessary in the unusual case when anticipating the installation of a 16-bit LAN9117/LAN9115 device in a 32-bit LAN9118/LAN9116 system. In this case R33 - R39 must be populated for use with a LAN9118 or LAN9116, and depopulated for use with a LAN9117 or LAN9115. Removal of R33 - R39 prevents contention of the MII outputs with the system data bus when a LAN9117 or LAN9115 is installed. Note that if migration is not a consideration, PCB footprints for R33 - R39 are not required.

Table 3.2 illustrates the requirements for R33 - R39. The table shows migration paths which require PCB footprints for these resistors. Blank boxes do not require PCB footprints. In these cases R33 - R39 may be omitted from the design and the associated signals can be connected directly to the LAN controller. Boxes that are checked require footprints for R33 - R39, and require that these resistors are populated when a LAN9118/LAN9116 is installed, and depopulated when a LAN9117/LAN9115 is installed.

MIGRATING TO ... SYSTEM DESIGNED FOR... **LAN9118 LAN9118 LAN9116 LAN9116 32-BIT 16-BIT LAN9117 32-BIT 16-BIT LAN9115 √** ✓ LAN9118/32-bit LAN9118/16-bit LAN9117 LAN9116/32-bit LAN9116/16-bit LAN9115

Table 3.2 PCB Footprint Requirements for R33 - R39

For example, if a design incorporates a 32-bit data bus for the LAN controller, PCB footprints for resistors R33 - R39 must be included if it is anticipated that this design will utilize a LAN9115 or LAN9117. In such a design, when a LAN9118 or LAN9116 is installed, R33 - R39 are populated with zero-ohm resistors, thereby fully connecting the upper portion of the data bus. When a LAN9117 or LAN9115 is installed, R33 - R39 are depopulated, thereby isolating the upper portion of the system data bus from the MII outputs of the LAN9117/LAN9115.

3.2 EEDIO and MDIO Strap Configurations

Table A, shown in the schematic diagram in Figure 3.1 above, defines the device configuration straps allowing the configuration of the LAN9118 family of Ethernet controllers for:

- 32-bit Host Bus Mode Support
- 16-bit Host Bus Mode Support
- External MII Support

Table A in Figure 3.1, enumerates the specific population options for device configuration.

3.3 FIFO_SEL and SPEED_SEL Strap Configurations

As shown in Figure 3.1, pins FIFO_SEL and SPEED_SEL are used as device configuration straps allowing the configuration of the LAN9118 family of Ethernet controllers for:

- Network Default Mode Support (SPEED SEL; pull-down resistor R30)
- FIFO Direct Access Mode Support (FIFO_SEL; pull-down resistor R29 and series resistor R25)

Resistor R30 configures the default network speed for each device in the LAN9118 Family. When R30 is populated, the LAN9118 family device is configured for 10Mbps, Half-Duplex and Auto-Negotiation is disabled. When R30 is not populated, the LAN9118 family device is configured for 100Mbps, Half-Duplex and Auto-Negotiation is enabled.

Resistor R29, which is used to pull-down FIFO_SEL, is populated when FIFO direct access mode support is not required. In this case, R25 must also be removed to isolate FIFO_SEL from address line A11.

When R25 is populated and R29 is depopulated, the TX and RX FIFOs are accessed via address decode. The FIFO_SEL pin can be tied to a higher-order address bit (A11 for example) to support this mode of operation. In this case, FIFO direct access read and write cycles occur when A11 is driven high.

Note: Address line A11 is used in this example because it corresponds to the 2KB offset from the base address of the LAN controller. This address line may vary in other system implementations. Using a high-order address line is one implementation. Other implementations are possible.

Please refer to the appropriate LAN9118 Family of datasheet(s) for additional information on this function.

4 Additional Notes

- The external pull down on the EXRES1 pin must be a 12.4K Ohm, 1% resistor.
- External pull down on RBIAS must be a 12.0K Ohm, 1% resistor.
- It is required that C9 and C22 are low ESR 10uF, ceramic Capacitors.

80 Arkay Drive Hauppauge, NY 11788 (631) 435-6000 FAX (631) 273-3123

Copyright © 2005 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC's website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation ("SMSC"). Product names and company names are the trademarks of their respective holders.

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.

IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.