
 2004 Microchip Technology Inc. DS51454A

J1939 C Library for PIC16
Microcontrollers and MCP2515

User’s Guide

M

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
DS51454A-page ii
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,
SEEVAL, SmartShunt and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net,
dsPICworks, ECAN, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select
Mode, SmartSensor, SmartTel and Total Endurance are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2004 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in October
2003. The Company’s quality system processes and procedures are for
its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, nonvolatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M

Table of Contents
Preface ... 1
Chapter 1. Introduction

1.1 Overview .. 3
1.2 J1939 Support and Limitations .. 3

Chapter 2. How To Use The Library
2.1 Introduction .. 5
2.2 Basic Setup ... 6
2.3 Messages .. 8

Chapter 3. Library Configuration
3.1 Introduction .. 11

Chapter 4. Library Functions
4.1 Introduction .. 15
4.2 External Interface Routines ... 16
4.3 Internal Routines ... 17

Appendix A. Examples
A.1 Introduction .. 19

Worldwide Sales and Service .. 32
 2004 Microchip Technology Inc. DS51454A-page iii

J1939 C Library for PIC16 Microcontrollers and MCP2515
NOTES:
DS51454A-page iv 2004 Microchip Technology Inc.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M
Preface
HIGHLIGHTS
This section contains general information that will be useful to know before using the
J1939 C Library for PIC16 Microcontrollers and MCP2515 User’s Guide.
The topics discussed in this section are:

- About This Guide
- Recommended Reading
- The Microchip Internet Web Site
- Customer Support

ABOUT THIS GUIDE

Document Layout
• Chapter 1: Introduction – provides an overview of the libraries and identifies

their level of support and limitations.
• Chapter 2: How to use the Library – lists the source files and how/where they

are included in the user’s source files and directory. Also describes the basic
setup when using interrupt or polling methods and defines the J1939 message
structure.

• Chapter 3: Library Configuration – describes the necessary steps to properly
configure the libraries.

• Chapter 4: Library Functions – provides a detailed description of the the library
functions.

• Appendix A: Examples – provides some example source code to help the user
get started using the libraries.

• Worldwide Sales and Service – gives the address, telephone and fax number
for Microchip Technology Inc. sales and service locations throughout the world.

RECOMMENDED READING
The following is recommended reading.

MCP2515 Data Sheet (DS21801)

This document is available on Microchip’s web site at www.microchip.com.

THE MICROCHIP INTERNET WEB SITE
Microchip provides easy access to our documentation and on-line support through our
World Wide Web Site at www.microchip.com. You can download files from the web site
or from our FTP site at ftp://ftp.microchip.com.
 2004 Microchip Technology Inc. DS51454A-page 1

J1939 C Library for PIC16 Microcontrollers and MCP2515
CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Corporate Applications Engineer (CAE)
• Hot Line
Customers should call their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. See the
back cover for a listing of sales offices and locations.
Corporate applications engineers (CAEs) may be contacted at (480) 786-7627.
In addition, there is a Systems Information and Upgrade Line. This line provides system
users a listing of the latest versions of all of Microchip’s development systems software
products. Plus, this line provides information on how customers can receive any
currently available upgrade kits.
The Hot Line Numbers are:
• 1-800-755-2345 for U.S. and most of Canada, and
• 1-480-786-7302 for the rest of the world.
DS51454A-page 2 2004 Microchip Technology Inc.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M

Chapter 1. Introduction
1.1 OVERVIEW
The J1939 C Library is targeted for use with PIC16 microcontroller applications written
with HI-TECH’s PICC™ C compiler using the MCP2515 Stand-alone CAN Controller.
It offers J1939 communications protocol support for single address capable Controller
Applications (CA’s) that are either non-configurable, service configurable or command
configurable. The library routines handle initialization and network functions automati-
cally. User messages are placed in a queue for transmission. Messages that are
received for the CA are placed in a separate queue for processing. The queue sizes
are configurable by the user, based on available RAM. Many other aspects of the
library operation are also configurable to allow for various hardware and software
designs.

1.2 J1939 SUPPORT AND LIMITATIONS
The following address capabilities are supported:
• Non-configurable Address CA’s
• Service Configurable CA’s
• Command Configurable CA’s
The following address capabilities are NOT supported:
• Self-configurable CA’s
• Arbitrary Address Capable CA’s
Both PDU1 and PDU2 formats are supported.
Broadcast Announce Message format is supported only to the extent that the
Commanded Address message can be received and processed. Any Data Transfer
packets that are received that are not part of the Commanded Address message are
ignored.
Working Sets are not supported.
Refer to SAE specifications J1939, J1939-21 and J1939-81 for more information on the
J1939 specification.
 2004 Microchip Technology Inc. DS51454A-page 3

J1939 C Library for PIC16 Microcontrollers and MCP2515
NOTES:
DS51454A-page 4 2004 Microchip Technology Inc.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M

Chapter 2. How to Use the Library
2.1 INTRODUCTION
The main function of the library is to queue all received messages for processing by the
CA, transmit all messages that the CA would like to send and handle all network
management transparently to the CA. Received and transmitted messages are stored
in their own separate queues, so the interface to the J1939/CAN network is
encapsulated in the library. Network management messages, such as address
arbitration, are handled entirely by the library with no processing required by the CA.
Network management messages also do not require any additional receive or transmit
queue space, so the queue size can be customized independently of the library
functionality.

2.1.1 Project files
The following C files must be compiled and linked with the main CA file(s):
• j1939_16.c

• spi16.c

The following header file must be included into any CA C files that utilize the library
routines or any J1939 definitions:
• j1939cfg.h

The file, j1939cfg.h, also includes the following files. These files do not have to be
explicitly included into the CA C files:
• spi16.h

• mcp2515.h

• j1939_16.h

• j1939pro.h

All of these files must be located in the same directory. They do not have to be in the
project directory, but since j1939cfg.h will change for each CA (the NAME, Address,
etc. will be different), each project will need its own unique copy of the files. You may
want to copy them into a sub-directory under the main project directory. Do NOT simply
rename j1939cfg.h, since other library files use it.
 2004 Microchip Technology Inc. DS51454A-page 5

J1939 C Library for PIC16 Microcontrollers and MCP2515
2.2 BASIC SETUP
The library can be configured to use either the MCP2515’s interrupt capability or to poll
the device.

2.2.1 Using Interrupts
Interrupts are the preferred method of operation, since it decreases the likelihood that
received messages will be missed. Refer to 3.1.1 “Hardware Configuration” for
information on what pins to connect to support interrupts.
There are three functions that need to be called for basic J1939 function support (refer
to Chapter 4. “Library Functions” for the details of these functions):
• J1939_Initialization

• J1939_Poll

• J1939_ISR

After performing any self-test or other initialization, call J1939_Initialization to
setup the J1939 support and begin the process of establishing the CA’s presence on
the network. When this function terminates, the CA will be able to receive global and
broadcast messages, but it will not yet have a J1939 Address unless the Address is
less than 128. After J1939_Initialization is called, global interrupts can be
enabled.
After initialization, call J1939_Poll every few milliseconds until the
WaitingForAddressClaimContention flag is clear. When this flag is clear, the
CA can check the CannotClaimAddress flag. If this flag is clear, the system is on the
network with an established address. If this flag is set, the CA does not have an
accepted address on the network.
If the CA cannot accept the Commanded Address message, then it is not necessary to
call J1939_Poll after WaitingForAddressClaimContention is clear. However,
if the Commanded Address message can be accepted, then call J1939_Poll every
few milliseconds whenever the WaitingForAddressClaimContention is set.
Note that if the system is configured for interrupts, J1939_Poll will not check for
received messages or transmit queued messages.
The CA’s interrupt handler must be declared in the following manner:

#pragma interrupt_level 0
void interrupt MyISR(void)

This clarifies to the compiler that functions called by J1939_Initialization will not
be called simultaneously during the interrupt handling. Because of this, it is vital that
global interrupts not be enabled until after J1939_Initialization is called.
The CA’s interrupt handler must call J1939_ISR if the INTF flag is set. This function
places any received messages into the receive queue for processing and transmits any
messages that can be transmitted from the transmit queue. It also automatically
handles any network management messages and clears the INTF flag.
DS51454A-page 6 2004 Microchip Technology Inc.

2.2.2 Using Polling
If necessary, the MCP2515 can be polled to transmit and receive messages. Polling
may be required if the external interrupt cannot be used due to hardware design
constraints. If using polling, ensure that the MCP2515 is polled often enough to avoid
missing a received message.
There are two functions that need to be called for basic J1939 function support (refer
to Chapter 4. “Library Functions” for the details of these functions):
• J1939_Initialization

• J1939_Poll

After performing any self-test or other initialization, call J1939_Initialization to
set up the J1939 support and begin the process of establishing the CA’s presence on
the network. When this function terminates, the CA will be able to receive global and
broadcast messages, but it will not yet have a J1939 Address unless the Address is
less than 128.
After initialization, call J1939_Poll every few milliseconds until the
WaitingForAddressClaimContention flag is clear. When this flag is clear, the
CA can check the CannotClaimAddress flag. If this flag is clear, the system is on the
network with an established address. If this flag is set, the CA does not have an
accepted address on the network.
Continue to call J1939_Poll to transmit any messages that can be transmitted from
the transmit queue and place any received messages into the receive queue for
processing. Any network management messages are handled automatically.
 2004 Microchip Technology Inc. DS51454A-page 7

J1939 C Library for PIC16 Microcontrollers and MCP2515
2.3 MESSAGES

2.3.1 Message Definition and Structure
Create one or more message buffers using the following definition:

J1939_USER_MSG_BANK J1939_MESSAGE MyMessage;

Since each message buffer requires 13 bytes of RAM, try to keep the number of
message buffers to a minimum. In most situations, only one or two CA message buffers
will be needed.
The message structure is defined in j1939_16.h, but here are the main fields that the
CA will use. Refer to the J1939 Specification for details on each portion of the message.
• MyMessage.Msg.DataPage, one bit
• MyMessage.Msg.Priority, three bits
• MyMessage.Msg.PDUFormat, one byte
• MyMessage.Msg.PDUSpecific, one byte. This field can also be referenced as
DestinationAddress or GroupExtension to help clarify the CA code.

• MyMessage.Msg.SourceAddress, one byte (this is automatically filled in by the
library before transmission)

• MyMessage.Msg.DataLength, 4 bits, but must be between 0 and 8
• MyMessage.Msg.Data[8], array of 8 bytes

2.3.2 Received Messages
Network management messages are handled automatically by the library. Any other
messages are queued for processing by the CA. These messages include:
• Broadcast messages
• Messages sent to the CA’s Address
• Messages sent to the global Address
Call the routine J1939_DequeueMessage to pull one message out of the receive
queue and place it in a buffer for processing. Check the variable RXQueueCount
to see if there are any messages ready in the queue. Check the flag
J1939_Flags.Flags.ReceivedMessagesDropped to see if any messages have
been dropped. Refer to the 4.2.1 “unsigned char J1939_DequeueMessage
(J1939_USER_MSG_BANK J1939_MESSAGE *MsgPtr);” for more details.

2.3.3 Transmit Messages
Network management messages are handled automatically by the library. Place any
other messages the CA wishes to send into the transmit queue by calling
J1939_EnqueueMessage to copy the message into the transmit queue.
Refer to 4.2.2 “unsigned char J1939_EnqueueMessage
(J1939_USER_MSG_BANK J1939_MESSAGE *MsgPtr);” for more details. The rou-
tine J1939_TransmitMessages performs the actual transmission of the message
when it is called from either J1939_Poll or J1939_ISR.

2.3.4 Loss of J1939 Address
If another J1939 node on the bus claims the same address, the two nodes’ NAMEs are
compared. The node with the lower NAME value is allowed to keep the address and
the other node must relinquish it. If the latter happens, the CA is no longer allowed to
transmit messages other than the Cannot Claim Address message and it can only
receive messages sent to the global address or broadcast messages.
DS51454A-page 8 2004 Microchip Technology Inc.

2.3.5 Using the Commanded Address Message
If the library has been configured to allow the Commanded Address message, the
Commanded Address message will be automatically processed when it is received.
The system will initiate a claim to the new address and if successful, use that address
for subsequent transmissions. If the claim is unsuccessful, the CA will no longer be able
to transmit messages. It can only receive messages sent to the global address or
broadcast messages.
If the CA wishes to send the Commanded Address message, it must enqueue
the BAM and two DT packets, per the J1939-21 specification. Refer to
Appendix A. “Examples”, Example A-3, for Commanded Address transmission
example.
 2004 Microchip Technology Inc. DS51454A-page 9

J1939 C Library for PIC16 Microcontrollers and MCP2515
NOTES:
DS51454A-page 10 2004 Microchip Technology Inc.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M

Chapter 3. Library Configuration
3.1 INTRODUCTION
The library is configured through a single C header file, j1939cfg.h. Additionally, one
C function may be required in the CA code.

3.1.1 Hardware Configuration

3.1.1.1 NON-CONFIGURABLE ITEMS

Some hardware aspects cannot be configured, since they would make the library more
difficult to use. These items are as follows:
• If interrupts are used, the MCP2515 INT pin must be connected to the PIC®

device’s INT pin (RB0)
• The library does not use the nRXnBF and nTXnRTS pins

3.1.1.2 INTERRUPTS

If interrupts are used, connect the MCP2515 INT pin to the PIC device’s INT pin (RB0).

3.1.1.3 MCP2515 CHIP SELECT PIN

Configure the MCP2515 chip select pin to any allowable PIC device’s output pin by
setting J1939_CS_PIN and J1939_CS_TRIS to a valid pin and TRIS pair, per the
HI-TECH PICC header file.

3.1.1.4 SPI™ MODE

Set the SPI mode to either of the allowable MCP2515 SPI modes by setting
J1939_SPI_MODE to either MODE_00 for 0,0 or MODE_11 for 1,1.

3.1.1.5 SPI SPEED

Set the SPI speed to FOSC/4, FOSC/16 or FOSC/64 by setting J1939_SPI_SPEED to
SPI_FOSC_4, SPI_FOSC_16 or SPI_FOSC_64.

3.1.1.6 SPI DATA INPUT SAMPLE PHASE

Set the SPI data input sample phase to sample at either the end or the middle of the
data output time by setting J1939_SAMPLE to either SMPEND or SMPMID.

3.1.1.7 CLKOUT/SOF

The library does not use the CLKOUT/SOF pin. To enable the CLKOUT pin, set
J1939_CLKOUT to CLKOUT_ENABLE and set J1939_CLKOUT_PS to CLKOUT_PS1,
CLKOUT_PS2, CLKOUT_PS4 or CLKOUT_PS8 for prescalers of FCLOCKOUT of System
Clock/1, 2, 4 or 8. Otherwise, set J1939_CLKOUT to CLKOUT_DISABLE. If the CA uses
this feature, ensure that other MCP2515 functions are not altered.
 2004 Microchip Technology Inc. DS51454A-page 11

J1939 C Library for PIC16 Microcontrollers and MCP2515
3.1.1.8 CAN BIT TIMING

The CAN bit timing is set by the values of J1939_CNF1, J1939_CNF2 and
J1939_CNF3. Refer to the MCP2515 Data Sheet (DS21801), Section 5.0 “Bit
Timing”, for details on defining these values. Take care that all nodes in the system
have identical bit timing.

3.1.2 Software Configuration
Many items of the software can be configured. These items are set up in the
j1939cfg.h header file and are broken out as follows:

3.1.2.1 INTERRUPTS VS. POLLING

If interrupts are used to detect when messages are ready to be received or transmitted,
J1939_POLL_MCP must not be defined. If polling is used, then J1939_POLL_MCP
must be defined.

3.1.2.2 J1939 CONFIGURATION

• If the CA can accept the Commanded Address message, define the label
J1939_ACCEPT_CMDADD. It is important that this label is defined only when the
Commanded Address message can be accepted to allow the library compilation
to optimize out any unnecessary functions. Also, the CA must provide a function
that returns ‘1’ if the Commanded Address message can be accepted and a ‘0’ if it
must be ignored. In the case of a service configurable CA, the function may check
the level on a pin to see if a service tool has been installed. In the case of a com-
mand configurable CA, the function may simply return ‘1’. The function must have
the prototype:

unsigned char CA_AcceptCommandedAddress(void);

• Define the initial CA Address value by setting J1939_STARTING_ADDRESS to a
valid initial address. Note that this address value must be a valid value as per the
J1939 specification.

• Set the 8-byte CA NAME by defining J1939_CA_NAMEx to the individual NAME
bytes, where ‘x’ goes from 0 to 7 and 0 is the Least Significant Byte of the NAME.
For example, suppose a CA’s NAME fields have the following values (refer to the
SAE J1939 Specification for the permissible values for each field):

Arbitrary Address Capable (1 bit) 0 Not capable
Industry Group (3 bits) 3 Construction equipment
Vehicle System Instance (4 bits) 0 First instance
Vehicle System (7 bits) 0 Non-specific system
(Reserved) (1 bit) 0
Function (8 bits) 0x81 Laser receiver
Function Instance (5 bits) 0 First instance
ECU Instance (3 bits) 0 First instance
Manufacturer Code (11 bits) 8 Caterpillar, Inc.
Identity Number (21 bits) 0x16D35A Unique for the application
DS51454A-page 12 2004 Microchip Technology Inc.

The complete NAME value would then be: 0x300081000116D35A. Note that the three
Least Significant bits of the manufacturer code are mapped into the three Most
Significant bits of the Most Significant Byte of the identity number. This NAME value
should be mapped into the following #defines:

3.1.2.3 MESSAGE QUEUE CONFIGURATION

• Define the size of the received message queue by setting the value of
J1939_RX_QUEUE_SIZE. This value must be greater than or equal to ‘1’. Refer
to Section 3.1.2.4 “RAM Management” for more information on setting up the
queues.

• Define the size of the transmit message queue by setting the value of
J1939_TX_QUEUE_SIZE. This value must be greater than or equal to ‘1’. Refer
to Section 3.1.2.4 “RAM Management” for more information on setting up the
queues.

• If the receive queue is full and another message is received, this message
can either be dropped or it can overwrite the previous message. If
J1939_OVERWRITE_RX_QUEUE is defined as J1939_TRUE, the new message
overwrites the previous message. If it is defined as J1939_FALSE, the message
is dropped and a flag is set to indicate that received messages have been
dropped.

• If the transmit queue is full and another message is queued for transmit, this
message can either be dropped or it can overwrite the previous message. If
J1939_OVERWRITE_TX_QUEUE is defined as J1939_TRUE, the new message
overwrites the previous message. If it is defined as J1939_FALSE, the message
is dropped and a return code indicates that the message was not queued.

3.1.2.4 RAM MANAGEMENT

• For optimal RAM allocation, the queues can be moved into different banks. Set
J1939_RX_QUEUE_BANK and/or J1939_TX_QUEUE_BANK to Bank 1, Bank 2 or
Bank 3 (dependent on the device) as necessary to balance the queues and CA
RAM usage.

• Due to HI-TECH PICC RAM addressing constraints, the library must also know
the bank where the message buffers that are passed into
J1939_EnqueueMessage and J1939_DequeueMessage are located. This
bank does not have to match either J1939_RX_QUEUE_BANK or
J1939_TX_QUEUE_BANK. Set J1939_USER_MSG_BANK to Bank 1, Bank 2 or
Bank 3 (dependent on the device) and define any message structures used by
the CA as follows:

J1939_USER_MSG_BANK J1939_MESSAGE MyMessage;

#define J1939_CA_NAME7 0x30
#define J1939_CA_NAME6 0x00
#define J1939_CA_NAME5 0x81
#define J1939_CA_NAME4 0x00
#define J1939_CA_NAME3 0x01
#define J1939_CA_NAME2 0x16
#define J1939_CA_NAME1 0xD3
#define J1939_CA_NAME0 0x5A
 2004 Microchip Technology Inc. DS51454A-page 13

J1939 C Library for PIC16 Microcontrollers and MCP2515
Note the following when deciding which bank to place the queues and the size of the
queues:
• Each message in the queue requires 13 bytes of RAM.
• The bank containing the receive queue will have an additional 16 bytes used by

the library (8 bytes if the Commanded Address message is not allowed).
• The bank containing the transmit queue will have an additional 13 bytes used by

the library.

3.1.2.5 STACK VS. ROM TRADE-OFFS

By default, the library is configured for optimal ROM usage. In this configuration, the
following limitations apply:
• Interrupt processing will require five stack levels, which includes the level used by

the interrupt itself. This limits the mainline application to three levels. If function
calls are nested more than three levels, it puts the application at risk for a stack
overflow unless interrupts are disabled during those times.

• J1939_Poll requires three stack levels, including the level needed to call the
function itself. Therefore, J1939_Poll may be called only from the mainline
code, if using interrupts.

• J1939_EnqueueMessage and J1939_DequeueMessage require two stack
levels, including the level needed to call the function itself. Therefore, these
routines may be called either from the mainline or from another function called
from the mainline, if using interrupts.

If the CA has ROM to spare and requires more stack space, the library can be
configured to use less stack space at the expense of using more ROM. Uncomment
the line:

#define SPI_USE_ONLY_INLINE_DEFINITIONS

in j1939cfg.h to get the following limitations:
• Interrupt processing will require four stack levels, which includes the level used by

the interrupt itself. This limits the mainline application to four levels. If function
calls are nested more than four levels, it puts the application at risk for a stack
overflow unless interrupts are disabled during those times.

• J1939_Poll, J1939_EnqueueMessage, and J1939_DequeueMessage
require two stack levels, including the level needed to call the function itself.
Therefore, these routines may be called from either the mainline, or from another
function up to two levels deep from the mainline, if using interrupts.
DS51454A-page 14 2004 Microchip Technology Inc.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M

Chapter 4. Library Functions
4.1 INTRODUCTION

4.1.1 Interface Variables

4.1.1.1 CA ADDRESS

The CA Address can be accessed through the variable J1939_Address. Under
normal operation, this value should not be required by the CA and the CA MUST NOT
modify this variable. Messages that are transmitted by using
J1939_EnqueueMessage automatically have this value inserted into the Source
Address portion of the message.

4.1.1.2 CA NAME

The CA NAME can be accessed (and modified if necessary) through the array
CA_Name. This is an array of unsigned chars, stored Least Significant Byte to Most
Significant Byte.

4.1.1.3 J1939 STATUS

The network status can be obtained by looking at two variables, J1939_Flags and
RXQueueCount. The following flags in J1939_Flags are of use to the CA:
• J1939_Flags.Flags.CannotClaimAddress – set to ‘1’ if either an address

has not yet been claimed or the address cannot be claimed.
• J1939_Flags.Flags.WaitingForAddressClaimContention – set to ‘1’ if

the system is trying to claim an address and is waiting for a claim contention. If
this flag is set, J1939_Poll must be called every few milliseconds, even if
interrupts are being used, to check for contention time-out.

• J1939_Flags.Flags.ReceivedMessagesDropped – set if
J1939_OVERWRITE_RX_QUEUE is defined as J1939_FALSE and received
messages have been dropped because the queue was full. The CA must clear
this flag.

The CA can alter only J1939_Flags.Flags.ReceivedMessagesDropped. The
CA must NOT alter the other flags.
RXQueueCount is the number of messages in the receive queue waiting for
processing by the CA.
 2004 Microchip Technology Inc. DS51454A-page 15

J1939 C Library for PIC16 Microcontrollers and MCP2515
4.2 EXTERNAL INTERFACE ROUTINES

4.2.1 unsigned char J1939_DequeueMessage
(J1939_USER_MSG_BANK J1939_MESSAGE *MsgPtr);

This function pulls a received message out of the queue and places it into the buffer
pointed to by MsgPtr. The following status values are returned:
• RC_SUCCESS – Message dequeued successfully.
• RC_QUEUEEMPTY – No messages to return.
• RC_CANNOTRECEIVE – System cannot currently receive messages. This is

returned only after the receive queue is empty.

4.2.2 unsigned char J1939_EnqueueMessage
(J1939_USER_MSG_BANK J1939_MESSAGE *MsgPtr);

This function takes the message in the CA’s RAM pointed to by MsgPtr and places it
in the queue for transmission. While the message will automatically have the CA’s
Source Address placed in the proper field, the CA must fill in the other values. The
following status values are returned:
• RC_SUCCESS – Message dequeued successfully.
• RC_QUEUEFULL – Transmit queue full; message not queued.
• RC_CANNOTTRANSMIT – System cannot currently transmit messages.

4.2.3 void J1939_Initialization(void);
This function must be called after any CA self-test and basic initialization. It initializes
the library’s global variables, the SPI port, the MCP device and interrupts, if necessary.
It then initiates the process of establishing the CA’s address on the network.

4.2.4 void J1939_ISR(void);
The CA must call this inline function if it receives an interrupt and the INTF flag is set.
This function then calls J1939_ReceiveMessage to process any received messages
and J1939_TransmitMessage to transmit any messages in the transmit queue. It
then clears the INTF flag. Since this function is implemented inline, it does not use a
stack level.

4.2.5 void J1939_Poll(unsigned char ElapsedTime);
After J1939_Initialization, this function must be called every few milliseconds
until J1939_Flags.Flags.WaitingForAddressClaimContention is clear in
order to establish that there is no contention for the CA’s address on the network. If
interrupts are not used, this function must also be called every few milliseconds during
the CA’s functioning to check for received messages. If interrupts are used and the
Commanded Address message can be accepted, this function must still be called
every few milliseconds during the CA’s main processing to check for address
contention in response to claiming a Commanded Address. If interrupts are used,
J1939_Poll will not check for received messages or messages to transmit, but will
allow the J1939_ISR to handle that processing. ElapsedTime can either be a value
calculated at run time or be a constant value. Round down to the nearest millisecond
to ensure that the minimum 250 ms contention wait time is met.
DS51454A-page 16 2004 Microchip Technology Inc.

4.3 INTERNAL ROUTINES
For reference, this is a list of the internal library routines. It should not be necessary for
the CA to utilize these functions, but advanced applications may find them useful.

4.3.1 void J1939_AddressClaimHandling(unsigned char Mode);
This routine is called internally when either the CA must claim its address on the bus
or another CA is trying to claim the same address on the bus. The CA must either
defend itself or relinquish the address.

4.3.2 void J1939_ReceiveMessages(void);
This routine is called internally from either J1939_ISR when an interrupt is received
from the MCP2515 or from J1939_Poll. If messages have been received, they are
read in. Network management messages are processed, while other messages are
placed in the receive queue for the CA. If interrupts are used, the CA is responsible for
checking the INTF flag and calling J1939_ISR if it is set. If the receive queue is
full and another message has been received,
J1939_Flags.Flags.ReceivedMessagesDropped is set.
To reduce stack usage, some message handling is done within this routine:
• Commanded Address Handling: This code is compiled only if
J1939_ACCEPT_CMDADD is defined. Otherwise, it is not compiled into the library.
This section of code is executed if the CA can be commanded to change its
address and it is being sent a Commanded Address message. Note that this
message must be sent using the Broadcast Announce Message (BAM) protocol.
The BAM protocol is only supported to the extent needed to accept the
Commanded Address message

4.3.3 void J1939_RequestForAddressClaimHandling(void);
This routine is called internally if the CA has received a Request for Address Claim
message. If the CA cannot claim an address, the routine sends out a Cannot Claim
Address message. Otherwise, the routine sends out an Address Claim message for the
CA’s address.

4.3.4 unsigned char J1939_TransmitMessages(void);
This routine is called internally from either J1939_ISR when an interrupt is received
from the MCP2515 or from J1939_Poll. It transmits as many messages from the
transmit queue as it can. If the system cannot transmit messages, an error code is
returned. If interrupts are used, the CA is responsible for checking the INTF flag and
calling J1939_ISR if it is set. Note that only two of the three MCP2515 transmit buffers
are used to ensure that the messages are actually transmitted on the bus in the order
that they were queued. The following status values are returned:
• RC_SUCCESS – Message was transmitted successfully.
• RC_CANNOTTRANSMIT – System cannot transmit messages. Either the CA

cannot claim an address or the MCP2515 is busy.
• RC_QUEUEEMPTY – Transmit queue was empty.
 2004 Microchip Technology Inc. DS51454A-page 17

J1939 C Library for PIC16 Microcontrollers and MCP2515
NOTES:
DS51454A-page 18 2004 Microchip Technology Inc.

J1939 C LIBRARY FOR PIC16
MICROCONTROLLERS AND MCP2515
M

Appendix A. Examples
A.1 INTRODUCTION
The following examples show how the J1939 library routines are used in a CA. Note
that the applications and values are for demonstration only and are not intended to
mimic an actual automotive application. Read these examples in order, as each one
builds on the last. Important items to note from one to the next are bolded.

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you,
the Company’s customer, for use solely and exclusively on Microchip products manufactured by the company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are
reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable
laws, as well as to civil liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY
CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON
WHATSOEVER.

EXAMPLE A-1:

/*
Example 1

This example shows a very simple J1939 implementation. It uses polling
to check for a message to light an LED and to send a message if a
button is pressed.

j1939cfg.h should be configured as follows:

J1939_ACCEPT_CMDADD should be commented out
J1939_POLL_MCP should be uncommented
*/

#include <pic.h>
#include ".\j1939\j1939cfg.h"

J1939_USER_MSG_BANK J1939_MESSAGE Msg;

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISD0 = 1; // Switch pin
TRISD1 = 0; // LED pin
RD1 = 0; // Turn off LED
 2004 Microchip Technology Inc. DS51454A-page 19

J1939_Initialization();

// Wait for address contention to time out
while (J1939_Flags.Flags.WaitingForAddressClaimContention)
{

DelayMilliseconds(1);
J1939_Poll(1);

}

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = RD0;
if (LastSwitch != CurrentSwitch)
{

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = OTHER_NODE;
Msg.Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.Msg.PDUFormat = TURN_ON_LED;
else

Msg.Msg.PDUFormat = TURN_OFF_LED;
 while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

LastSwitch = CurrentSwitch;
}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.Msg.PDUFormat == TURN_ON_LED)

RD1 = 1;
else if (Msg.Msg.PDUFormat == TURN_OFF_LED)

RD1 = 0;
}

// Since we don’t accept the Commanded Address message,
// the value passed here doesn’t matter.
J1939_Poll(1);

}
}

/***/
/***/

EXAMPLE A-1: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 20

EXAMPLE A-2:

/*
Example 2

This example shows the same concept as Example 1, except that instead
of polling, it uses interrupts to check for a message to light an LED
and to send a message if a button is pressed.

j1939cfg.h should be configured as follows:

J1939_ACCEPT_CMDADD should be commented out
J1939_POLL_MCP should be commented out
*/

#include <pic.h>
#include ".\j1939\j1939cfg.h"

J1939_USER_MSG_BANK J1939_MESSAGE Msg;

#pragma interrupt_level 0
void interrupt isr(void)
{

if (INTF)
J1939_ISR();

}

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISD0 = 1; // Switch pin
TRISD1 = 0; // LED pin
RD1 = 0; // Turn off LED

J1939_Initialization();
 GIE = 1;

// Wait for address contention to time out
while (J1939_Flags.Flags.WaitingForAddressClaimContention)
{

DelayMilliseconds(1);
J1939_Poll(1);

}

// Now we know our address should be good, so start checking for
// messages and switches.
 2004 Microchip Technology Inc. DS51454A-page 21

while (1)
{

CurrentSwitch = RD0;
if (LastSwitch != CurrentSwitch)
{

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = OTHER_NODE;
Msg.Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.Msg.PDUFormat = TURN_ON_LED;
else

Msg.Msg.PDUFormat = TURN_OFF_LED;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.Msg.PDUFormat == TURN_ON_LED)

RD1 = 1;
else if (Msg.Msg.PDUFormat == TURN_OFF_LED)

RD1 = 0;
}

// We don’t need to call J1939_Poll, since the queues will
// be managed during the INT interrupt handling.

}
}

/***/
/***/

EXAMPLE A-2: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 22

EXAMPLE A-3:

/*
Example 3a

This example shows the same concept as Example 2, using interrupts to
check for a message to light an LED and to send a message if a button
is pressed. But for the first 5 button presses, the message is sent to
the wrong address. On the 5th push, the Commanded Address message is
sent to command the other node to use the address that this node is
sending the message to. Note that this node doesn’t even need to know
what the other node’s first address is, as long as it knows the node’s
NAME.

j1939cfg.h should be configured as follows:

J1939_ACCEPT_CMDADD should be commented out
J1939_POLL_MCP should be commented out
*/

#include <pic.h>
#include ".\j1939\j1939cfg.h"

J1939_USER_MSG_BANK J1939_MESSAGE Msg;

#pragma interrupt_level 0
void interrupt isr(void)
{

if (INTF)
J1939_ISR();

}

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

 unsigned charPushCount = 0;

TRISD0 = 1; // Switch pin
TRISD1 = 0; // LED pin
RD1 = 0; // Turn off LED

J1939_Initialization();
 GIE = 1;
 2004 Microchip Technology Inc. DS51454A-page 23

// Wait for address contention to time out
while (J1939_Flags.Flags.WaitingForAddressClaimContention)
{

DelayMilliseconds(1);
J1939_Poll(1);

}

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = RD0;
if (LastSwitch != CurrentSwitch)
{

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = SECOND_ADDRESS;
Msg.Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.Msg.PDUFormat = TURN_ON_LED;
else
{

Msg.Msg.PDUFormat = TURN_OFF_LED;
if (PushCount < 6)

PushCount ++;
}

 while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

if (PushCount == 5)
{

EXAMPLE A-3: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 24

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = J1939_GLOBAL_ADDRESS;
Msg.Msg.DataLength = 8;
Msg.Msg.PDUFormat = J1939_PF_CM_BAM;
Msg.Msg.Data[0] = 1939_BAM_CONTROL_BYTE;
Msg.Msg.Data[1] = 9; // 9 data bytes
Msg.Msg.Data[2] = 0;
Msg.Msg.Data[3] = 2; // 2 packets
Msg.Msg.Data[4] = 0xFF; // Reserved
Msg.Msg.Data[5] = J1939_PGN0_COMMANDED_ADDRESS;
Msg.Msg.Data[6] = J1939_PGN1_COMMANDED_ADDRESS;
Msg.Msg.Data[7] = J1939_PGN2_COMMANDED_ADDRESS;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = J1939_GLOBAL_ADDRESS;
Msg.Msg.DataLength = 8;
Msg.Msg.PDUFormat = J1939_PF_DT;
Msg.Msg.Data[0] = 1; // First packet
Msg.Msg.Data[1] = NODE_NAME0;
Msg.Msg.Data[2] = NODE_NAME1;
Msg.Msg.Data[3] = NODE_NAME2;
Msg.Msg.Data[4] = NODE_NAME3;
Msg.Msg.Data[5] = NODE_NAME4;
Msg.Msg.Data[6] = NODE_NAME5;
Msg.Msg.Data[7] = NODE_NAME6;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

Msg.Msg.Data[0] = 2; // Second packet
Msg.Msg.Data[1] = NODE_NAME7;
Msg.Msg.Data[2] = SECOND_ADDRESS;
Msg.Msg.Data[3] = 0xFF;
Msg.Msg.Data[4] = 0xFF;
Msg.Msg.Data[5] = 0xFF;
Msg.Msg.Data[6] = 0xFF;
Msg.Msg.Data[7] = 0xFF;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

EXAMPLE A-3: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 25

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.Msg.PDUFormat == TURN_ON_LED)

RD1 = 1;
else if (Msg.Msg.PDUFormat == TURN_OFF_LED)

RD1 = 0;
}

}
}

/***/
/***/

EXAMPLE A-3: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 26

EXAMPLE A-4:

/*
Example 3b

This example shows what the receiving node for Example 3a should look
like, using the same concept as Example 2 of using interrupts to check
for a message to light an LED and to send a message if a button is
pressed. Note that three basic changes are required:

- it must accept the Commanded Address message (j1939cfg.h)

- it must have a CA_AcceptCommandedAddress function

- it must call J1939_Poll during the main loop, even though inter-
rupts are being used.

The rest of the code is identical. The change of address will be
handled in the background.

j1939cfg.h should be configured as follows:

J1939_ACCEPT_CMDADD should be uncommented
J1939_POLL_MCP should be commented out
*/

#include <pic.h>
#include ".\j1939\j1939cfg.h"

J1939_USER_MSG_BANK J1939_MESSAGE Msg;

unsigned char CA_AcceptCommandedAddress(void)
{

return 1;
}

#pragma interrupt_level 0
void interrupt isr(void)
{

if (INTF)
J1939_ISR();

}

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISD0 = 1; // Switch pin
TRISD1 = 0; // LED pin
RD1 = 0; // Turn off LED
 2004 Microchip Technology Inc. DS51454A-page 27

J1939_Initialization();
 GIE = 1;

// Wait for address contention to time out
while (J1939_Flags.Flags.WaitingForAddressClaimContention)
{

DelayMilliseconds(1);
J1939_Poll(1);

}

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = RD0;
if (LastSwitch != CurrentSwitch)
{

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = OTHER_NODE;
Msg.Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.Msg.PDUFormat = TURN_ON_LED;
else

Msg.Msg.PDUFormat = TURN_OFF_LED;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.Msg.PDUFormat == TURN_ON_LED)

RD1 = 1;
else if (Msg.Msg.PDUFormat == TURN_OFF_LED)

RD1 = 0;
}

// We need to call J1939_Poll since we can accept the
// Commanded Address message. Now the time value passed in
// is important.
J1939_Poll(MAIN_LOOP_TIME_IN_MS);

}
}

/***/
/***/

EXAMPLE A-4: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 28

EXAMPLE A-5:

/*
Example 4

This example shows the same concept as Example 2, except that broadcast
messages are used rather than messages sent to a specific address.

j1939cfg.h should be configured as follows:

J1939_ACCEPT_CMDADD should be commented out
J1939_POLL_MCP should be commented out
*/

#include <pic.h>
#include ".\j1939\j1939cfg.h"

J1939_USER_MSG_BANK J1939_MESSAGE Msg;

#pragma interrupt_level 0
void interrupt isr(void)
{

if (INTF)
J1939_ISR();

}

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISD0 = 1; // Switch pin
TRISD1 = 0; // LED pin
RD1 = 0; // Turn off LED

J1939_Initialization();
 GIE = 1;

// Wait for address contention to time out
while (J1939_Flags.Flags.WaitingForAddressClaimContention)
{

DelayMilliseconds(1);
J1939_Poll(1);

}

// Now we know our address should be good, so start checking for
// messages and switches.
 2004 Microchip Technology Inc. DS51454A-page 29

if (LastSwitch != CurrentSwitch)
{

Msg.Msg.DataPage = 0;
Msg.Msg.Priority = 7;
Msg.Msg.DestinationAddress = OTHER_NODE;
Msg.Msg.PDUFormat = 254;
Msg.Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.Msg.GroupExtension= TURN_ON_LED;
else

Msg.Msg.GroupExtension= TURN_OFF_LED;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.Msg.GroupExtension == TURN_ON_LED)

RD1 = 1;
else if (Msg.Msg.GroupExtension == TURN_OFF_LED)

RD1 = 0;
}

}
}

/***/
/***/

EXAMPLE A-5: (CONTINUED)
 2004 Microchip Technology Inc. DS51454A-page 30

 2004 Microchip Technology Inc. DS51454A-page 31

NOTES:

DS51454A-page 32 2004 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338
San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/26/04

WORLDWIDE SALES AND SERVICE

	Chapter 1. Introduction
	1.1 Overview
	1.2 J1939 Support and Limitations

	Chapter 2. How to Use the Library
	2.1 Introduction
	2.2 Basic Setup
	2.3 Messages

	Chapter 3. Library Configuration
	3.1 Introduction

	Chapter 4. Library Functions
	4.1 Introduction
	4.2 External Interface Routines
	4.3 Internal Routines

	Appendix A. Examples
	A.1 Introduction

