Silicon Errata and Data Sheet Clarifications

ATmega329P/ATmega3290P

Introduction

The ATmega329P/3290P devices you have received conform functionally to the current device data sheet (ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8021-AVR-ATmega329P-3290P_Datasheet.pdf), except for the anomalies described in this document. The errata described in this document will likely be addressed in future revisions of the ATmega329P/3290P devices.

Note:

• This document summarizes all the silicon errata issues from all revisions of silicon, previous and current

1. Silicon Issue Summary

- Erratum is not applicable.
- X Erratum is applicable.

			Valid for Silicon Revision				
Peripheral			ATmega329P/3290F				
		Rev. A (1)	Rev. B	Rev. C			
Device	2.2.1. Using BOD Disable Will Make the Device Reset	X	-	-			
Timer	2.3.1. Interrupts May Be Lost When Writing the Timer Registers in the Asynchronous Timer	X	Х	Х			

Note:

1. This revision is the initial release of the silicon.

2. Silicon Errata Issues

2.1 Errata Details

- Erratum is not applicable.
- X Erratum is applicable.

2.2 Device

2.2.1 Using BOD Disable Will Make the Device Reset

If the device enters sleep with the BOD turned off with the BOD disable option enabled, a BOD reset will be generated at wakeup, and the device will reset.

Work Around

Do not use BOD disable.

Affected Silicon Revisions

	ATmega329P/3290P	
Rev. A	Rev. B	Rev. C
X	-	-

2.3 Timer

2.3.1 Interrupts May Be Lost When Writing the Timer Registers in the Asynchronous Timer

The interrupt will be lost if writing a timer register that is a synchronous timer clock when the asynchronous Timer/Counter register (TCNTx) is 0×00 .

Work Around

Always check that the asynchronous Timer/Counter register neither has the value $0 \times FF$ nor 0×00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

Affected Silicon Revisions

	ATmega329P/3290P	
Rev. A	Rev. B	Rev. C
X	X	X

3. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS4000XXXX).

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting has been removed for clarity.

3.1 Errata Section in Data Sheet is no Longer Valid

A clarification for the Errata section in the device data sheet has been made.

The errata content has been moved to a separate document, *ATmega329P/3290P* (this document).

See the Silicon Errata Issues section of this document for the latest errata.

3.2 Power Management and Sleep Modes

3.2.1 Power Management and Sleep Modes

A clarification has been made to the *Active clock domains and wake-up sources in the different sleep modes* table to make the headings visible.

Table 10-1. Active Clock Domains and Wake-Up Sources in the Different Sleep Modes

		Active	Clock D	omains	5	Oscillators Wake-up Sources					Oscillators Wake-up Sources				
Sleep Mode	clk _{CPU}	сlk _{FLAS} н	cIK _{IO}	clk _{ADC}	clk _{ASY}	Main Clock Source Enabled	Timer Osc Enabled	INT0 and Pin Change	USI Start Condition	LCD Controller	Timer2	SPM/ EEPROM Ready	ADC	Other I/O	Software BOD Disable
Idle			X	Х	Χ	Χ	X ⁽²⁾	Χ	Χ	Χ	Χ	Х	Χ	Χ	
ADC NRM				Χ	Χ	Χ	X ⁽²⁾	X ⁽³⁾	Χ	X ⁽²⁾	X ⁽²⁾	Χ	Χ		
Power-down								X(3)	Χ						X
Power-save					Χ		X	X(3)	Χ	Χ	Χ				X
Standby ⁽¹⁾						X		X ⁽³⁾	X						X

Notes:

- 1. Only recommended with external XTAL or resonator selected as clock source.
- 2. If either the LCD controller or Timer/Counter2 is running in asynchronous mode.
- 3. For INTO, only level interrupt.

3.3 Interrupts

3.3.1 Interrupt Vectors in ATmega329P/3290P

A clarification for the source names of the Interrupt vectors has been made to comply with the header file naming convention.

Table 3-1. Reset and Interrupt Vectors in ATmega329P

Vector No	Program Address(2)	Source	Interrupts definition
1	0x0000 ⁽¹⁾	RESET	External pin, Power-on Reset, Brown-out Reset, Watchdog System Reset and JTAG AVR Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	PCINT0	Pin Change Interrupt Request 0
4	0x0006	PCINT1	Pin Change Interrupt Request 1
5	0x0008	TIMER2_COMP	Timer/Counter2 Compare Match
6	0x000A	TIMER2_OVF	Timer/Counter2 Overflow
7	0x000C	TIMER1_CAPT	Timer/Counter1 Capture Event
8	0x000E	TIMER1_COMPA	Timer/Counter1 Compare Match A
9	0x0010	TIMER1_COMPB	Timer/Coutner1 Compare Match B
10	0x0012	TIMER1_OVF	Timer/Counter1 Overflow
11	0x0014	TIMERO_COMP	Timer/Counter0 Compare Match
12	0x0016	TIMERO_OVF	Timer/Counter0 Overflow
13	0x0018	SPI_STC	SPI Serial Transfer Complete
14	0x001A	USARTO_RX	USART Receive complete
15	0x001C	USARTO_UDRE	USART Data Register Empty
16	0x001E	USARTO_TX	USART Transmit complete
17	0x0020	USI_START	USI Start Condition
18	0x0022	USI_OVERFLOW	USI Overflow
19	0x0024	ANALOG_COMP	Analog Comparator
20	0x0026	ADC	ADC Conversion complete
21	0x0028	EE_READY	EEPROM Ready
22	0x002A	SPM_READY	Store Program Memory Ready
23	0x002C	LCD	LCD Start of Frame

Notes:

- 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at Reset. See "Boot Loader Support Read-While-Write Self- Programming".
- 2. When setting the IVSEL bit in MCUCR, Interrupt Vectors will be moved to the start of the boot Flash section. The address of each Interrupt Vector will then be the address in this table added to the start address of the boot Flash section.

The table below shows the Reset and Interrupt Vectors placement for the various combinations of the BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt Vectors are unused, and regular program codes can be placed at these locations. This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the Boot section or vice versa.

Table 3-2. Reset and Interrupt Vectors Placement

BOOTRST(1)	IVSEL	Reset Address	Interrupt Vectors Start Address
1	0	0x000	0x002
1	1	0x000	Boot Reset Address + 0x0002
0	0	Boot Reset Address	0x002
0	1	Boot Reset Address	Boot Reset Address + 0x0002

Note: 1. For the BOOTRST Fuse, "1" means unprogrammed, while "0" means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses is:

```
Labels
                           Code
Address
                                      Comments
0x0000
                                         RESET
                                                                   ; Reset Handler
                             jmp
                                                                   ; IRQ0 Handler
; PCINTO Handler
0x0002
                                         INT0
                             qmj
0x0004
                                         PCINT0
                             jmp
                                                                  ; PCINT1 Handler
; Timer2 CompareA Handler
; Timer2 Overflow Handler
0x0006
                                         PCTNT1
                             jmp
                                         TIMER2 COMP
0x0008
                             qmp
                                         TIMER2 OVF
0x000A
                             qmr
                                         TIMER1_CAPT
TIMER1_COMPA
                                                                   ; Timer1 Capture Handler
; Timer1 CompareA Handler
0x000C
                             jmp
0x000E
                             jmp
                                         TIMER1_COMPB
                                                                   ; Timer1 CompareB Handler
0x0010
                             jmp
                                                                  ; Timer1 CompareB Handler
; Timer1 Overflow Handler
; Timer0 Compare Handler
; Timer0 Overflow Handler
; SPI Transfer Complete Handler
; USART RX Complete Handler
; USART UDR Empty Handler
; USI Start Condition Handler
; USI Overflow Handler
; Analog Comparator Handler
; ADC Conversion Complete Handler
0 \times 0.012
                                         TIMER1 OVF
                             jmp
0x0014
                             jmp
                                         TIMERO COMP
0x0016
                                         TIMERO OVF
                             jmp
0 \times 0.018
                                         SPI STC
                             jmp
                                         USARTO_RX
0x001A
                             jmp
0x001C
                                         USARTO UDRE
                             jmp
0x0020
                             jmp
                                         USI START
                                         USI OVERFLOW
0x0022
                             jmp
                                         ANALOG_COMP
0 \times 0.024
                             jmp
                                                                    ; ADC Conversion Complete Handler
0x0026
                             jmp
                                         ADC
                                         EE_READY
0x0028
                                                                    ; EEPROM Ready Handler
                             jmp
                                                                   ; SPM Ready Handler
0×002A
                             qmj
                                         SPM READY
0x002C
                                         T<sub>i</sub>CD
                                                                    ; LCD Start of Frame Handler
                             jmp
0x0034
             RESET: ldi
                                         r16, high (RAMEND) ; Main program start
                                     rl6,nrgr...
SPH,r16
0x0035
                           out
                                                                     ; Set Stack Pointer to top of RAM
0×0036
                                         r16, low(RAMEND)
                            ldi
0x0037
                             out
                                         SPL,r16
0x0038
                             sei
                                                                     ; Enable interrupts
0x0039
                             <instr> xxx
```

When the BOOTRST Fuse is unprogrammed, the Boot section size is set to 2 KB, and the MCUCR.IVSEL is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is:

```
Labels
                      Code
                                                    Comments
0×0000
        RESET:
                      ldi
                               r16, high (RAMEND)
                                                    ; Main program start
0x0001
                               SPH,r16
                                                    ; Set Stack Pointer to top of RAM
                      out
                               r16, low(RAMEND)
0×0002
                      ldi
0 \times 0003
                      out
                               SPL,r16
0x0004
                                                    ; Enable interrupts
0 \times 0.005
                     <instr> xxx
.org 0x1C02
0x1C02
                               EXT INTO
                                                    ; IRQ0 Handler
0x1C04
                               EXT_INT1
                                                    ; IRQ1 Handler
                      jmp
0x1C32
                      jmp
                               SPM RDY
                                                    ; SPM Ready Handler
```

When the BOOTRST Fuse is programmed and the Boot section size is set to 2 KB, the most typical and general program setup for the Reset and Interrupt Vector Addresses is:

```
Address
         Labels
                     Code
                                                    Comments
.org 0x0002
0 \times 0002
                      ami
                               EXT INTO
                                                   ; IRQ0 Handler
                                                    ; IRQ1 Handler
0 \times 0004
                               EXT INT1
                     jmp
0x0032
                     jmp
                               SPM RDY
                                                   ; SPM Ready Handler
.org 0x1C00
0x1C00 RESET:
                    ldi
                            r16, high (RAMEND)
                                                ; Main program start
                    out
0x1C01
                            SPH,r16
                                                  ; Set Stack Pointer to top of RAM
0x1C02
                              r16, low(RAMEND)
                    ldi
0x1C03
                    out
                             SPL, r16
0x1C04
                                                   ; Enable interrupts
                    sei
0x1C05
                    <instr> xxx
```


When the BOOTRST Fuse is programmed, the Boot section size is set to 2 KB and the MCUCR.IVSEL is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is:

```
Address
          Labels
                     Code
                                                   Comments
.org 0x1C00
0x1C00
0x1C02
                              RESET
                                                   ; Reset handler
                     jmp
                              EXT_INT0
                     jmp
                                                   ; IRQ0 Handler
0x1C04
                     jmp
                              EXT INT1
                                                   ; IRQ1 Handler
0x1C32
                              SPM RDY
                                                   ; SPM Ready Handler
                     jmp
0x1C34
          RESET:
                     ldi
                              r16,high(RAMEND)
                                                   ; Main program start
0x1C35
                              SPH,r16
                                                   ; Set Stack Pointer to top of RAM
                     out
0x1C36
                     ldi
                              r16, low (RAMEND)
0x1C37
                              SPL,r16
                     out
0x1C38
                     sei
                                                   ; Enable interrupts
0x1C39
                    <instr> xxx
```

Table 3-3. Reset and Interrupt Vectors in ATmega3290P

iable 3-3.	Reset and interrupt ve	ctors in Affilegasz	.501
Vector N	o Program Address ⁽²⁾	Source	Interrupts definition
1	0x0000 ⁽¹⁾	RESET	External pin, Power-on Reset, Brown-out Reset, Watchdog Reset and JTAG AVR Reset.
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	PCINT0	Pin Change Interrupt Request 0
4	0x0006	PCINT1	Pin Change Interrupt Request 1
5	0x0008	TIMER2_COMP	Timer/Counter2 Compare Match
6	0x000A	TIMER2_OVF	Timer/Counter2 Overflow
7	0x000C	TIMER1_CAPT	Timer/Counter1 Capture Event
8	0x000E	TIMER1_COMPA	Timer/Counter1 Compare Match A
9	0x0010	TIMER1_COMPB	Timer/Counter1 Compare Match B
10	0x0012	TIMER1_OVF	Timer/Counter1 Overflow
11	0x0014	TIMERO_COMP	Timer/Counter0 Compare Match
12	0x0016	TIMERO_OVF	Timer/Counter0 Overflow
13	0x0018	SPI_STC	SPI Serial Transfer Complete
14	0x001A	USARTO_RX	USART0 Receive complete
15	0x001C	USARTO_UDRE	USART Data Register Empty
16	0x001E	USARTO_TX	USART Transmit complete
17	0x0020	USI_START	USI Start condition
18	0x0022	USI_OVERFLOW	USI Overflow
19	0x0024	ANALOG_COMP	Analog Comparator
20	0x0026	ADC	ADC Conversion complete
21	0x0028	EE_READY	EEPROM Ready
22	0x002A	SPM_READY	Store Program Memory Ready
23	0x002C	LCD	LCD Start of Frame
24	0x002E	PCINT2	Pin Change Interrupt Request 2
25	0x0030	PCINT3	Pin Change Interrupt Request 3

Notes:

- 1. When the BOOTRST fuse is programmed, the device will jump to the boot loader address at Reset. See "Boot Loader Support Read-While-Write Self- Programming".
- 2. When setting the IVSEL bit in MCUCR, Interrupt Vectors will be moved to the start of the boot Flash section. The address of each Interrupt Vector will then be the address in this table added to the start address of the boot Flash section.

The most typical and general program setup for the Reset and Interrupt Vector Addresses is:

	<i>7</i> 1	· .	0 1	•
Address 0x0000 0x0002 0x0004 0x0006 0x0008 0x0000C 0x0000C 0x0010 0x0012 0x0014 0x0016 0x0018 0x0018 0x0010 0x0020 0x0022 0x0024 0x0022 0x0024 0x0025 0x0028 0x0022 0x0028	Labels	Code jmp	RESET INTO PCINTO PCINT1 TIMER2_COMP TIMER2_OVF TIMER1_CAPT TIMER1_COMPA TIMER1_COMPB TIMER0_COMP TIMER0_OVF SPI_STC USARTO_RX USARTO_RX USARTO_UDRE USI_START USI_OVERFLOW ANALOG_COMP ADC EE_READY SPM_READY LCD PCINT2 PCINT3	Comments ; Reset Handler ; IRQ0 Handler ; PCINTO Handler ; PCINT1 Handler ; Timer2 CompareA Handler ; Timer2 Overflow Handler ; Timer1 Capture Handler ; Timer1 CompareA Handler ; Timer1 CompareB Handler ; Timer1 CowpareB Handler ; Timer0 Overflow Handler ; Timer0 Compare Handler ; Timer0 Transfer Complete Handler ; USART RX Complete Handler ; USART UDR Empty Handler ; USI Start Condition Handler ; USI Overflow Handler ; USI Overflow Handler ; Analog Comparator Handler ; Analog Comparator Handler ; EEPROM Ready Handler ; SPM Ready Handler ; CCD Start of Frame Handler ; PCINT2 Handler Handler
0x0034 0x0035 0x0036 0x0037	RESET:	ldi out ldi out	r16, high (RAMEND) SPH, r16 r16, low (RAMEND) SPL, r16	; Main program start ; Set Stack Pointer to top of RAM
0x0038 0x0039		sei <instr></instr>	xxx	; Enable interrupts

3.4 Electrical Characteristics – TA = -40°C to 85°C

3.4.1 Analog Input Offset Voltage (T_A = -40°C to 85°C)

A clarification has been made for the "Analog Comparator Input Offset Voltage".

Table 3-4. $T_A = -40$ °C to 85°C, $V_{CC} = 1.8V$ to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V_{IL}	Input low voltage, except XTAL1 pin	V _{CC} = 1.8-2.4V	-0.5		0.2V _{CC} ⁽¹⁾	
		V _{CC} = 2.4-5.5V	-0.5		0.3V _{CC} ⁽¹⁾	
V _{IL1}	Input low voltage, XTAL1 pin	V _{CC} = 1.8-5.5V	-0.5		0.1V _{CC} ⁽¹⁾	
V_{IH}	Input high voltage, except XTAL1 and RESET	V _{CC} = 1.8-2.4V	0.7V _{CC} ⁽²⁾		V _{CC} + 0.5	
	pins	V _{CC} = 2.4-5.5V	0.6V _{CC} ⁽²⁾		V _{CC} + 0.5	
V _{IH1}	Input high voltage, XTAL1 pin	V _{CC} = 1.8-2.4V	0.8V _{CC} ⁽²⁾		V _{CC} + 0.5	
		V _{CC} = 2.4-5.5V	0.7V _{CC} ⁽²⁾		$V_{CC} + 0.5$	
V _{IH2}	Input high voltage, RESET pin	V _{CC} = 1.8-5.5V	0.85V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{OL}	Output low voltage ⁽³⁾ , Port A, C, D, E, F, G, H, J	I _{OL} = 10 mA, V _{CC} = 5V			0.9	V
		$I_{OL} = 5 \text{ mA}, V_{CC} = 3V$			0.6	
V _{OL1}	Output low voltage ⁽³⁾ , Port B	I _{OL} = 20 mA, V _{CC} = 5V			0.9	
		I _{OL} = 10 mA, V _{CC} = 3V			0.6	
V _{OH}	Output high voltage ⁽⁴⁾ , Port A, C, D, E, F, G, H, J	I _{OH} = -10 mA, V _{CC} = 5V	4.2			
		$I_{OH} = -5 \text{ mA}, V_{CC} = 3V$	2.3			
V _{OH1}	Output high voltage ⁽⁴⁾ , Port B	I _{OH} = -20 mA, V _{CC} = 5V	4.2			
		I _{OH} = -10 mA, V _{CC} = 3V	2.3			
I _{IL}	Input leakage current I/O Pin	V _{CC} = 5.5V, pin low (absolute value)			1	
I _{IH}	Input leakage current I/O Pin	V _{CC} = 5.5V, pin high (absolute value)			1	μΑ

•••••	continued										
Symbol	Parameter	Condition	Min.	Тур.	Max.	Units					
R _{RST}	Reset pull-up resistor		20		100	kΩ					
R _{PU}	I/O Pin pull-up resistor		20		100	kΩ					
V _{ACIO}	Analog comparator input offset voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$		< 10	40	mV					
V _{ACIO}	Analog comparator input offset voltage	V _{CC} < 3.6V V _{in} < 0.5V		<15	60 ⁽⁵⁾	mV					
V _{ACIO}	Analog comparator input offset voltage	V _{CC} > 3.6V V _{in} < 0.5V		<15	500 ⁽⁵⁾	mV					
I _{ACLK}	Analog comparator	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50		50	nA					
t _{ACID}	Analog comparator propagation delay	V _{CC} = 2.7V V _{CC} = 4.0V		750 500		ns					

Notes:

- 1. "Max" means the highest value where the pin is ensured to be read as low.
- 2. "Min" means the lowest value where the pin is ensured to be read as high.
- 3. Although each I/O port can sink more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V for Port B and 10 mA at V_{CC} = 5V, 5 mA at V_{CC} = 3V for all other ports) under steady-state conditions (non-transient), observe the following:
 - TQFP and QFN/MLF Package:
 - i. The sum of all I_{OL} may not exceed 400 mA for all ports.
 - ii. The sum of all I_{OL} may not exceed 100 mA for ports A0 A7, C4 C7, and G2.
 - iii. The sum of all I_{OL} may not exceed 100 mA for ports B0 B7, E0 E7, and G3 G5.
 - iv. The sum of all I_{Ol} may not exceed 100 mA for ports D0 D7, C0 C3, and G0 G1.
 - v. The sum of all I_{OI} may not exceed 100 mA for ports F0 F7.

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not ensured to sink current higher than the listed test condition.

- 4. Although each I/O port can source more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V for Port B and 10 mA at V_{CC} = 5V, 5 mA at V_{CC} = 3V for all other ports) under steady-state conditions (non-transient), observe the following:
 - TQFP and QFN/MLF Package:
 - i. The sum of all I_{OH} may not exceed 400 mA for all ports.
 - ii. The sum of all I_{OH} may not exceed 100 mA for ports A0 A7, C4 C7, and G2.
 - iii. The sum of all I_{OH} may not exceed 100 mA for ports B0 B7, E0 E7, and G3 G5.
 - iv. The sum of all I_{OH} may not exceed 100 mA for ports D0 D7, C0 C3, and G0 G1.
 - v. The sum of all I_{OH} may not exceed 100 mA for ports F0 F7.

If I_{OH} exceeds the test condition, V_{OH} may exceed the related specification. Pins are not ensured to source current higher than the listed test condition.

5. These values are based on characterization. The maximum limit in production can, therefore, not be assured.

3.4.2 Power-Down Specification Limit (T_A = -40°C to 85°C)

A clarification for the power-down specification limit has been made. This clarification has corrections that are impractical to mark in bold. The following tables in this section contain the most current information and notes.

Table 3-5. ATmega329P DC Characteristics. $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{CC} = 1.8\text{V}$ to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Active 1 MHz, V _{CC} = 2V		0.5	0.75	
		Active 4 MHz, V_{CC} = 3V		2.6	3.5	
	Power supply surrent(1)	Active 8 MHz, $V_{CC} = 5V$		9.0	12.0	mΛ
	Power supply current ⁽¹⁾	Idle 1 MHz, V _{CC} = 2V		0.14	0.25	mA μA
1		Idle 4 MHz, V _{CC} = 3V		0.75	1.5	
Icc		Idle 8 MHz, V _{CC} = 5V		2.9	5.0	
	Power-save mode ⁽²⁾	32.768 kHz TOSC enabled, V_{CC} = 1.8V		0.75		
	Power-Save mode(=)	32.768 kHz TOSC enabled, $V_{CC} = 3V$		1.0		
	Power-down mode ⁽²⁾	WDT enabled, $V_{CC} = 3V$		6.7	15.0	
		WDT disabled, $V_{CC} = 3V$		0.2	2.0	

Notes:

- 1. All bits are set in the 'Power Reduction Register' on page 43.
- 2. Maximum and Typical values for 25°C. Maximum values are test limits in production.

Table 3-6. ATmega3290P DC Characteristics. $T_A = -40^{\circ}\text{C}$ to 85°C, $V_{CC} = 1.8\text{V}$ to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Active 1 MHz, V _{CC} = 2V		0.5	0.75	
		Active 4 MHz, V _{CC} = 3V		2.6	3.5	
	Dower supply surrent(1)	Active 8 MHz, $V_{CC} = 5V$		9.0	12.0	m 1
	Power supply current ⁽¹⁾	Idle 1 MHz, V _{CC} = 2V		0.14	0.25	mA μA
		Idle 4 MHz, V _{CC} = 3V		0.75	1.5	
Icc		Idle 8 MHz, V _{CC} = 5V		2.9	5.0	
	Power-save mode ⁽²⁾	32.768 kHz TOSC enabled, V_{CC} = 1.8V		0.75		
	Power-Save mode(=)	32.768 kHz TOSC enabled, $V_{CC} = 3V$		1.0		
	Power-down mode ⁽²⁾	WDT enabled, $V_{CC} = 3V$		6.7	15.0	
		WDT disabled, $V_{CC} = 3V$		0.2	2.0	

Notes:

- 1. All bits are set in the 'Power Reduction Register' on page 43.
- 2. Maximum and Typical values for 25°C. Maximum values are test limits in production.

3.5 Electrical Characteristics – TA = -40°C to 105°C

3.5.1 Analog Input Offset Voltage (T_A = -40°C to 105°C)

A clarification has been made for the "Analog Comparator Input Offset Voltage" in the following table.

Table 3-7. $T_A = -40$ °C to 105°C, VCC = 1.8V to 5.5V (unless otherwise noted)

V _{CC} = 2.4-5.5V -0.5 0.3V _{CC} ⁽¹⁾ V _{IL1} Input low voltage XTAL1 pins V _{CC} = 1.8-5.5V -0.5 0.1V _{CC} ⁽¹⁾ V _{IL2} Input low voltage, RESET pins V _{CC} = 1.8-5.5V -0.5 0.1V _{CC} ⁽¹⁾ V _{IH} Input high voltage, RESET pins V _{CC} = 1.8-2.4V 0.7V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH} Input high voltage, XTAL1 pin V _{CC} = 1.8-2.4V 0.8V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH} Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH} Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH} Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH} Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{CC} + 0.	Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Vit 1 Input low voltage XTAL1 pins V _{CC} = 1.8-5.5V -0.5 0.1V _{CC} ⁽¹⁾ Vit 2 Input low voltage, RESET pins V _{CC} = 1.8-5.5V -0.5 0.1V _{CC} ⁽¹⁾ ViH Input high voltage except XTAL1 and RESET pins V _{CC} = 1.8-5.5V 0.6V _{CC} ⁽²⁾ V _{CC} + 0.5 ViH1 Input high voltage, XTAL1 pin V _{CC} = 1.8-2.4V 0.8V _{CC} ⁽²⁾ V _{CC} + 0.5 ViH1 Input high voltage, XTAL1 pin V _{CC} = 1.8-2.4V 0.8V _{CC} ⁽²⁾ V _{CC} + 0.5 ViH1 Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.8V _{CC} ⁽²⁾ V _{CC} + 0.5 ViH1 Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 ViH2 Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 ViH2 Input high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 VOL Output high voltage, XTAL1 pin V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ 0.771.0°1 VOL Output low voltage, XTAL1 pin V _C = 5.7 0.771.0°1 0.771.0°1 VOL1 Output low	V _{IL}	Input low voltage except XTAL1 and RESET pins	V _{CC} = 1.8-2.4V	-0.5		0.2V _{CC} ⁽¹⁾	
V _{IL2} Input low voltage, RESET pins V _{CC} = 1.8-5.5V -0.5 0.1V _{CC} ⁽¹⁾ V _{IH} Input high voltage except XTAL1 and RESET pins V _{CC} = 1.8-2.4V 0.7V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH1} Input high voltage, XTAL1 pin V _{CC} = 1.8-2.4V 0.8V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH2} Input high voltage, RESET pins V _{CC} = 2.4-5.5V 0.7V _{CC} ⁽²⁾ V _{CC} + 0.5 V _{IH2} Input high voltage ⁽³⁾ , Port A, C, D, E, F, G I _{IOL} = 10 mA, V _{CC} = 5V 0.7V _{1.0} ⁽⁵⁾ 0.7V _{1.0} ⁽⁶⁾ V _{OL} Output low voltage ⁽³⁾ , Port A, C, D, E, F, G I _{IOL} = 20 mA, V _{CC} = 3V 0.7V _{1.0} ⁽⁵⁾ 0.7V _{1.0} ⁽⁵⁾ V _{OL1} Output low voltage ⁽⁴⁾ , Port A, C, D, E, F, G I _{IOH} = -10 mA, V _{CC} = 5V 4.2 0.5/0.7 ⁽⁵⁾ V _{OL1} Output high voltage ⁽⁴⁾ , Port A, C, D, E, F, G I _{IOH} = -10 mA, V _{CC} = 5V 4.2 2.3 V _{OH} Output high voltage ⁽⁴⁾ , Port A, C, D, E, F, G I _{IOH} = -10 mA, V _{CC} = 3V 2.3 V _{OH} Output high voltage ⁽⁴⁾ , Port B I _{IOH} = -20 mA, V _{CC} = 3V 4.2 2.3 V _{IH} Input leakage current I/O Pin V _{CC} = 5.5V, pin high (abs			V _{CC} = 2.4-5.5V	-0.5		0.3V _{CC} ⁽¹⁾	
Input high voltage except XTAL1 and RESET V _{CC} = 1.8-2.4V 0.7V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 2.4-5.5V 0.6V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 2.4-5.5V 0.6V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 1.8-2.4V V _{CC} = 2.4-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 2.4-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 2.4-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 2.4-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 1.8-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 1.8-5.5V 0.9V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 1.8-5.5V 0.9V _{CC} V _{CC} + 0.5 V _{CC} + 0.5 V _{CC} = 1.8-5.5V 0.9V _{CC} V _{CC} + 0.5 V _{CC} = 1.8-5.5V 0.9V _{CC} V _{CC} + 0.5 V _{CC} = 1.8-5.5V V _{CC} = 1.8-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} = 1.8-5.5V V _{CC} = 1.8-5.5V V _{CC} = 1.8-5.5V 0.7V _{CC} V _{CC} + 0.5 V _{CC} = 1.8-5.5V V _{CC} =	V _{IL1}	Input low voltage XTAL1 pins	V _{CC} = 1.8-5.5V	-0.5		0.1V _{CC} ⁽¹⁾	
Pins	V _{IL2}	Input low voltage, RESET pins	V _{CC} = 1.8-5.5V	-0.5		0.1V _{CC} ⁽¹⁾	
Vish Input high voltage, XTAL1 pin Vcc = 1.8-2.4V 0.8Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc + 0.5 Vcc = 2.4-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc = 2.4-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc = 1.8-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc = 1.8-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc = 1.8-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc = 1.8-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc = 1.8-5.5V 0.7Vcc ⁽²⁾ Vcc + 0.5 Vcc + 0.5 Vcc + 0.5 Vcc = 1.8-5.5V 0.7Vcc ⁽²⁾ 0.7Vcc ⁽²⁾ 0.7Vcc ⁽³⁾ 0.7Vcc ⁽³⁾ 0.7Vcc ⁽⁴⁾	V _{IH}		V _{CC} = 1.8-2.4V	0.7V _{CC} ⁽²⁾		V _{CC} + 0.5	
$V_{OL} = 2.4-5.5V & 0.7V_{CC}^{(2)} & V_{CC} + 0.5 \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & V_{CC} + 0.5 \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & V_{CC} + 0.5 \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & V_{CC} + 0.5 \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & V_{CC} + 0.5 \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & V_{CC} + 0.5 \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & V_{CC}^{(2)} & V_{CC}^{(2)} & V_{CC}^{(2)} \\ V_{OL} = 1.8-5.5V & 0.9V_{CC}^{(2)} & 0.7/1.0^{(5)} \\ V_{OL} = 1.9 & M_{\odot} V_{CC} = 3V & 0.5/0.7^{(5)} \\ V_{OL} = 1.9 & M_{\odot} V_{CC} = 1.9 & 0.7/1.0^{(5)} \\ V_{OL} = 1.0 & M_{\odot} V_{CC} = 1.0 & M_{\odot} V_{CC} = 1.0 \\ V_{OL} = 1.0 & M_{\odot} V_{C$		pins	$V_{CC} = 2.4-5.5V$	0.6V _{CC} ⁽²⁾		$V_{CC} + 0.5$	
Vi _{H2} Input high voltage, RESET pins V _{CC} = 1.8-5.5V 0.9V _{CC} ⁽²⁾ V _{CC} + 0.5 V VOL Output low voltage ⁽³⁾ , Port A, C, D, E, F, G IoL = 10 mA, V _{CC} = 5V IoL = 5 mA, V _{CC} = 3V 0.570.7 ⁽⁵⁾ 0.570.7 ⁽⁵⁾ VOL1 Output low voltage ⁽³⁾ , Port B IoL = 20 mA, V _{CC} = 5V IoL = 10 mA, V _{CC} = 3V 0.570.7 ⁽⁵⁾ VOH Output high voltage ⁽⁴⁾ , Port A, C, D, E, F, G IoH = -10 mA, V _{CC} = 5V IoH = -10 mA, V _{CC} = 3V 4.2 VOH1 Output high voltage ⁽⁴⁾ , Port B IoH = -20 mA, V _{CC} = 5V IoH = -10 mA, V _{CC} = 3V 2.3 VIII. Input leakage current I/O Pin V _{CC} = 5.5V, pin low (absolute value) 1 μA Int. Input leakage current I/O Pin V _{CC} = 5.5V, pin high (absolute value) 1 μA Rest pull-up resistor 20 60 kΩ VACIO Analog comparator input offset voltage V _{CC} = 5V < 10	V _{IH1}	Input high voltage, XTAL1 pin	V _{CC} = 1.8-2.4V	0.8V _{CC} ⁽²⁾		V _{CC} + 0.5	
$ \begin{array}{c} V_{OL} & \text{Output low voltage}^{(3)}, \text{Port A, C, D, E, F, G} & I_{OL} = 10 \text{ mA, } V_{CC} = 5V \\ I_{OL} = 5 \text{ mA, } V_{CC} = 3V & 0.5/0.7^{(5)} \\ O.5/0.7^{(5)} & 0.5/0.7^{(5)} \\ $			V _{CC} = 2.4-5.5V	0.7V _{CC} ⁽²⁾		$V_{CC} + 0.5$	
$ l_{OL} = 5 \text{ mA, V}_{CC} = 3V \\ O_{OL1} Output low voltage^{(3)}, Port B l_{OL} = 20 \text{ mA, V}_{CC} = 5V \\ l_{OL} = 10 \text{ mA, V}_{CC} = 5V \\ O_{OL2} = 10 \text{ mA, V}_{CC} = 3V O.5/0.7^{(5)} O.5/0.7^{(5)} $	V _{IH2}	Input high voltage, RESET pins	V _{CC} = 1.8-5.5V	0.9V _{CC} ⁽²⁾		V _{CC} + 0.5	V
$V_{OL1} \text{Output low voltage}^{(3)}, \text{ Port B} \qquad \qquad I_{OL} = 20 \text{ mA}, V_{CC} = 5V \\ I_{OL} = 10 \text{ mA}, V_{CC} = 3V \\ \text{O.5}/0.7^{(5)} \\ \text{O.5}/0.7^{(5)} \\ \text{O.5}/0.7^{(5)} \\ \text{O.6}/0.7^{(5)} \\ \text{Output high voltage}^{(4)}, \text{ Port A, C, D, E, F, G}} \qquad I_{OH} = -10 \text{ mA, V}_{CC} = 5V \\ I_{OH} = -5 \text{ mA, V}_{CC} = 3V \\ \text{O.3} \\ \text{Output high voltage}^{(4)}, \text{ Port B}} \qquad I_{OH} = -20 \text{ mA, V}_{CC} = 5V \\ I_{OH} = -10 \text{ mA, V}_{CC} = 3V \\ \text{O.3} \\ \text{Output high voltage}^{(4)}, \text{ Port B}} \qquad I_{OH} = -20 \text{ mA, V}_{CC} = 5V \\ I_{OH} = -10 \text{ mA, V}_{CC} = 3V \\ \text{O.3} \\ \text{O.3} \\ \text{O.3} \\ \text{O.3} \\ \text{O.4} \\ \text{O.4} \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin low (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)}} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \\ \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \\ \text{Input leakage current I/O Pin pull-up resistor} \qquad 20 \\ \text{Input leakage current I/O Pin pull-up resistor} \qquad 20 \\ \text{Input leakage current I/O Pin pull-up resistor} \qquad 20 \\ Input leakage current I/O Pin pull$	V_{OL}	Output low voltage ⁽³⁾ , Port A, C, D, E, F, G	I _{OL} = 10 mA, V _{CC} = 5V			0.7/1.0 ⁽⁵⁾	
$I_{OL} = 10 \text{ mA, } V_{CC} = 3V \qquad 0.5/0.7^{(5)}$ $V_{OH} \qquad \text{Output high voltage}^{(4)}, \text{ Port A, C, D, E, F, G} \qquad I_{OH} = -10 \text{ mA, } V_{CC} = 5V \qquad 4.2 \\ I_{OH} = -5 \text{ mA, } V_{CC} = 3V \qquad 2.3 \qquad 2.3$ $V_{OH1} \qquad \text{Output high voltage}^{(4)}, \text{ Port B} \qquad I_{OH} = -20 \text{ mA, } V_{CC} = 5V \qquad 4.2 \\ I_{OH} = -10 \text{ mA, } V_{CC} = 3V \qquad 2.3$ $V_{IIL} \qquad \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin low (absolute value)} \qquad 1 \qquad \mu A$ $I_{IIH} \qquad \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \qquad \mu A$ $I_{RRST} \qquad \text{Reset pull-up resistor} \qquad 20 \qquad 60 \qquad k\Omega$ $R_{PU} \qquad \text{I/O Pin pull-up resistor} \qquad 20 \qquad 50 \qquad W\Omega$ $V_{ACIO} \qquad \text{Analog comparator input offset voltage} \qquad V_{CC} = 5V \qquad <10 40 \qquad \text{mV}$ $V_{In} = V_{CC}/2 \qquad 15 60^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad V_{In} < 0.5V \qquad 15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad V_{In} < 0.5V \qquad 50 \qquad 10 10 10 10 10 10 10 1$			$I_{OL} = 5 \text{ mA}, V_{CC} = 3V$			0.5/0.7 ⁽⁵⁾	
$\begin{array}{c} V_{OH} & \text{Output high voltage}^{(4)}, \text{ Port A, C, D, E, F, G} \\ V_{OH} & \text{Output high voltage}^{(4)}, \text{ Port A, C, D, E, F, G} \\ V_{OH} & \text{Output high voltage}^{(4)}, \text{ Port B} \\ V_{OH} & \text{Output high voltage}^{$	V _{OL1}	Output low voltage ⁽³⁾ , Port B	I _{OL} = 20 mA, V _{CC} = 5V			0.7/1.0(5)	
			I _{OL} = 10 mA, V _{CC} = 3V			0.5/0.7 ⁽⁵⁾	
V_{OH1} Output high voltage ⁽⁴⁾ , Port B I_{OH} = -20 mA, V_{CC} = 5V I_{OH} = -10 mA, V_{CC} = 3V 2.3 I_{IL} Input leakage current I/O Pin V_{CC} = 5.5V, pin low (absolute value) 1 I_{IH} Input leakage current I/O Pin V_{CC} = 5.5V, pin high (absolute value) 1 I_{IH} Input leakage current I/O Pin V_{CC} = 5.5V, pin high (absolute value) 1 I_{IH} R _{RST} Reset pull-up resistor 20 60 I_{CC} R _{PU} I/O Pin pull-up resistor 20 50 I_{CC} Analog comparator input offset voltage V_{CC} = 5V V_{CC} 410 40 mV V_{II} = V_{CC} /2 V_{CC} 42 V_{CC} 43.6V V_{II} = V_{CC} /2 V_{CC} 4.15 I_{CC} 60(6) mV I_{CC} 4.15 I_{CC} 60(6) mV I_{CC} 4.16 I_{CC} 6.17 I_{CC} 6.18 I_{CC} 6.19 I_{CC} 6.19 I_{CC} 6.19 I_{CC} 6.10	V _{OH}	Output high voltage ⁽⁴⁾ , Port A, C, D, E, F, G	I _{OH} = -10 mA, V _{CC} = 5V	4.2			
$I_{OH} = -10 \text{ mA, V}_{CC} = 3V \qquad 2.3$ $I_{IL} \qquad \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin low (absolute value)} \qquad 1 \qquad \mu A$ $I_{IH} \qquad \text{Input leakage current I/O Pin} \qquad V_{CC} = 5.5V, \text{ pin high (absolute value)} \qquad 1 \qquad \mu A$ $R_{RST} \qquad \text{Reset pull-up resistor} \qquad 20 \qquad 60 \qquad \kappa \Omega$ $R_{PU} \qquad \text{I/O Pin pull-up resistor} \qquad 20 \qquad 50 \qquad \kappa \Omega$ $V_{ACIO} \qquad \text{Analog comparator input offset voltage} \qquad V_{CC} = 5V \qquad <10 40 \qquad \text{mV}$ $V_{In} = V_{CC}/2 \qquad \qquad <15 60^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad <15 500^{(6)} \qquad \text{mV}$ $V_{In} < 0.5V \qquad \qquad $			$I_{OH} = -5 \text{ mA, } V_{CC} = 3V$	2.3			
Input leakage current I/O Pin $V_{CC} = 5.5V$, pin low (absolute value) 1 μA linput leakage current I/O Pin $V_{CC} = 5.5V$, pin high (absolute value) 1 μA R _{RST} Reset pull-up resistor 20 60 kΩ I/O Pin pull-up resistor 20 50 W _{ACIO} Analog comparator input offset voltage $V_{CC} = 5V$ V_{ACIO} Analog comparator input offset voltage $V_{CC} = 5V$	V _{OH1}	Output high voltage ⁽⁴⁾ , Port B	I _{OH} = -20 mA, V _{CC} = 5V	4.2			
I_{IH} Input leakage current I/O Pin $V_{CC} = 5.5V$, pin high (absolute value) 1 R_{RST} Reset pull-up resistor 20 60 R_{PU} I/O Pin pull-up resistor 20 50 V_{ACIO} Analog comparator input offset voltage $V_{CC} = 5V$ $V_{in} = V_{CC}/2$ V_{ACIO} Analog comparator input offset voltage $V_{CC} < 3.6V$ $V_{in} < 0.5V$ V_{ACIO} Analog comparator input offset voltage $V_{CC} > 3.6V$ $V_{in} < 0.5V$ V_{ACIO} Analog comparator input offset voltage $V_{CC} > 3.6V$ $V_{in} < 0.5V$ V_{ACIO} Analog comparator input offset voltage $V_{CC} > 3.6V$ $V_{in} < 0.5V$ V_{ACIO} Analog comparator $V_{CC} = 5V$ $V_{$			$I_{OH} = -10 \text{ mA}, V_{CC} = 3V$	2.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{IL}	Input leakage current I/O Pin	V _{CC} = 5.5V, pin low (absolute value)			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{IH}	Input leakage current I/O Pin	V _{CC} = 5.5V, pin high (absolute value)			1	μΑ
RPUI/O Pin pull-up resistor2050 V_{ACIO} Analog comparator input offset voltage $V_{CC} = 5V$ $V_{in} = V_{CC}/2$ < 10	R _{RST}	Reset pull-up resistor		20		60	kO
$V_{in} = V_{CC}/2$ $V_{ACIO} \text{Analog comparator input offset voltage} V_{cc} < 3.6V \\ V_{in} < 0.5V \\ V_{ACIO} \text{Analog comparator input offset voltage} V_{cc} > 3.6V \\ V_{in} < 0.5V \\ V_{in} < 0$	R _{PU}	I/O Pin pull-up resistor		20		50	IX32
$\begin{array}{c} V_{ACIO} & \text{Analog comparator input offset voltage} & V_{CC} < 3.6V \\ V_{In} < 0.5V \\ \end{array} \\ \begin{array}{c} V_{ACIO} & \text{Analog comparator input offset voltage} \\ V_{CC} > 3.6V \\ V_{In} < 0.5V \\ \end{array} \\ \begin{array}{c} <15 \\ 500^{(6)} \\ \text{mV} \\ \end{array} \\ \begin{array}{c} V_{CC} > 3.6V \\ V_{In} < 0.5V \\ \end{array} \\ \begin{array}{c} V_{CC} = 5V \\ V_{In} = V_{CC}/2 \\ \end{array} \\ \begin{array}{c} -50 \\ V_{CC} = 2.7V \\ \end{array} \\ \begin{array}{c} 50 \\ \text{ns} \\ \end{array}$	V_{ACIO}	Analog comparator input offset voltage	_ 		< 10	40	mV
$V_{in} < 0.5V$ $V_{ACIO} \text{Analog comparator input offset voltage} V_{CC} > 3.6V$ $V_{in} < 0.5V$ $V_{in} < 0.5V$ $V_{in} < 0.5V$ $V_{in} = V_{CC}/2$ $V_{in} = V_{CC}/2$ $V_{CC} = 2.7V$ $V_{in} = V_{CC}/2$			$V_{in} = V_{CC}/2$				
$\begin{array}{c} V_{ACIO} & \text{Analog comparator input offset voltage} & V_{CC} > 3.6V \\ V_{in} < 0.5V & & < 15 & 500^{(6)} & \text{mV} \\ \end{array}$ $\begin{array}{c} I_{ACLK} & \text{Analog comparator} & V_{CC} = 5V \\ V_{in} = V_{CC}/2 & & & < 50 & \text{nA} \\ \end{array}$ $\begin{array}{c} I_{ACLK} & \text{Analog comparator propagation delay} & V_{CC} = 2.7V & & 750 & \text{ns} \\ \end{array}$	V _{ACIO}	Analog comparator input offset voltage			<15	60 ⁽⁶⁾	mV
$V_{in} < 0.5V \\ V_{CC} = 5V \\ V_{in} = V_{CC}/2 \\ \\ V_{ACID} \\ Analog comparator propagation delay \\ V_{CC} = 2.7V \\ \\ V_{in} = V_{CC}/2 \\ \\ T50 \\ ns$			V _{in} < 0.5V				
V_{ACLK} Analog comparator $V_{CC} = 5V$ $V_{in} = V_{CC}/2$ $V_{in} = V_{CC}/2$ $V_{CC} = 2.7V$	V _{ACIO}	Analog comparator input offset voltage	_ 		<15	500 ⁽⁶⁾	mV
$V_{in} = V_{CC}/2$ t_{ACID} Analog comparator propagation delay $V_{CC} = 2.7V$ 750 ns			V _{in} < 0.5V				
t_{ACID} Analog comparator propagation delay $V_{CC} = 2.7V$ 750 ns	I _{ACLK}	Analog comparator		-50		50	nA
			$V_{in} = V_{CC}/2$				
	t _{ACID}	Analog comparator propagation delay	V _{CC} = 2.7V		750		ns
V _{CC} = 4.0V 500			V _{CC} = 4.0V		500		

Notes:

- 1. "Max" means the highest value where the pin is ensured to be read as low.
- 2. "Min" means the lowest value where the pin is ensured to be read as high.
- 3. Although each I/O port can sink more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V for Port B and 10 mA at V_{CC} = 5V, 5 mA at V_{CC} = 3V for all other ports) under steady-state conditions (non-transient), the following must be observed.
 - TQFP and QFN/MLF Package:
 - i. The sum of all I_{OL} may not exceed 400 mA for all ports.
 - ii. The sum of all I_{OL} may not exceed 100 mA for ports A0 A7, C4 C7, and G2.
 - iii. The sum of all I_{OI} may not exceed 100 mA for ports B0 B7, E0 E7, and G3 G5.
 - iv. The sum of all I_{OL} may not exceed 100 mA for ports D0 D7, C0 C3, and G0 G1.
 - v. The sum of all I_{OL} may not exceed 100 mA for ports F0 F7.

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not ensured to sink current higher than the listed test condition.

- 4. Although each I/O port can source more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V for Port B and 10 mA at V_{CC} = 5V, 5 mA at V_{CC} = 3V for all other ports) under steady-state conditions (non-transient), observe the following:
 - TQFP and QFN/MLF Package:
 - i. The sum of all I_{OH} may not exceed 400 mA for all ports.
 - ii. The sum of all I_{OH} may not exceed 100 mA for ports A0 A7, C4 C7, and G2.
 - iii. The sum of all I_{OH} may not exceed 100 mA for ports B0 B7, E0 E7, and G3 G5.
 - iv. The sum of all I_{OH} may not exceed 100 mA for ports D0 D7, C0 C3, and G0 G1.
 - v. The sum of all I_{OH} may not exceed 100 mA for ports F0 F7.

If I_{OH} exceeds the test condition, V_{OH} may exceed the related specification. Pins are not ensured to source current higher than the listed test condition.

- 5. Largest value for ATmega329P and ATmega3290P.
- 6. These values are based on characterization. The maximum limit in production can, therefore, not be assured.

3.5.2 Power-Down Specification Limit (T_A = -40°C to 105°C)

A clarification for the power-down specification limit has been made. This clarification has corrections that are impractical to mark in bold. The following tables in this section contain the most current information and notes.

Table 3-8. Current Consumption ATmega329P $T_A = -40^{\circ}\text{C}$ to 105°C, $V_{CC} = 1.8\text{V}$ to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Active 1 MHz, V _{CC} = 2V		0.4	0.85	
		Active 4 MHz, $V_{CC} = 3V$		2.3	3.8	
	Power supply current ⁽¹⁾	Active 8 MHz, $V_{CC} = 5V$		9.0	14.0	mA
	Power supply currents	Idle 1 MHz, V _{CC} = 2V		0.1	0.3	
		Idle 4 MHz, V _{CC} = 3V		0.8	1.65	
		Idle 8 Hz, $V_{CC} = 5V$		3.1	5.5	
I _{cc}	1 (2)	32.768 kHz TOSC enabled, $V_{CC} = 1.8V$		0.6	1.8	
	Power-save mode ⁽²⁾	32.768 kHz TOSC enabled, $V_{CC} = 3V$ 0.9 3	3.0	μΑ		
	Power-down mode ⁽²⁾	WDT enabled, $V_{CC} = 3V$		7	20	
		WDT disabled, $V_{CC} = 3V$		0.2	5.0	

Notes:

- 1. All bits are set in the 'Power Reduction Register' on page 43.
- 2. Maximum and Typical values for 25°C. Maximum values are test limits in production.

Table 3-9. Current Consumption ATmega3290P $T_A = -40^{\circ}\text{C}$ to 105°C , $V_{CC} = 1.8\text{V}$ to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
		Active 1 MHz, V _{CC} = 2V		0.4	0.85	8 .0 mA
		Active 4 MHz, V _{CC} = 3V		2.3	3.8	
	Power supply current ⁽¹⁾	Active 8 MHz, V _{CC} = 5V		9.0	14.0	
		Idle 1 MHz, V _{CC} = 2V		0.1	0.3	
		Idle 4 MHz, V _{CC} = 3V		0.8	1.65	
		Idle 8 MHz, V _{CC} = 5V		3.1	5.5	
I _{CC}	Power-save mode ⁽²⁾	32.768 kHz TOSC enabled, $V_{CC} = 1.8V$		0.6	1.8	
	Power-Save mode	32.768 kHz TOSC enabled, V_{CC} = 3V		0.9	3.0	μΑ
	Power-down mode ⁽²⁾	WDT enabled, V _{CC} = 3V		7.0	20	
		WDT disabled, $V_{CC} = 3V$		0.2	5.0	

Notes:

- 1. All bits are set in the 'Power Reduction Register' on page 43.
- 2. Maximum and Typical values for 25°C. Maximum values are test limits in production.

4. Document Revision History

Note: The document revision is independent of the silicon revision.

4.1 Revision History

Doc Rev.	Date	Comments
Α	4/2023	Initial document release.
		Content moved from the data sheet and restructured to the new document template
		Updated the die revision list to reflect die revisions in production
		Silicon Errata added:
		• 2.2.1. Using BOD Disable Will Make the Device Reset
		2.3.1. Interrupts May Be Lost When Writing the Timer Registers in the Asynchronous Timer
		Data Sheet Clarifications added:
		The Errata section in the data sheet is no longer valid
		• 3.2.1. Power Management and Sleep Modes
		• 3.3.1. Interrupt Vectors in ATmega329P/3290P
		• Electrical Characteristics – TA = -40°C to 85°C
		- 3.4.1. Analog Input Offset Voltage (TA = -40°C to 85°C)
		- 3.4.2. Power-Down Specification Limit (TA = -40°C to 85°C)
		• Electrical Characteristics – TA = -40°C to 105°C
		 3.5.1. Analog Input Offset Voltage (TA = -40°C to 105°C)
		- 3.5.2. Power-Down Specification Limit (TA = -40°C to 105°C)

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-2349-6

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
nandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
l: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
x: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
chnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
eb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
:lanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
l: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
x: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
l: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
l: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
x: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
nicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
l: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
x: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
l: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ix: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
d: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
l: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen	101. 04 20 3440 2100	Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
:l: 317-773-8323	China - Zhuhai		Norway - Trondheim
ix: 317-773-5323	Tel: 86-756-3210040		Tel: 47-72884388
:l: 317-536-2380	161. 80-730-3210040		Poland - Warsaw
os Angeles			Tel: 48-22-3325737
ission Viejo, CA			Romania - Bucharest
il: 949-462-9523			Tel: 40-21-407-87-50
ix: 949-462-9608			Spain - Madrid
l: 951-273-7800			Tel: 34-91-708-08-90
			Fax: 34-91-708-08-91
leigh, NC			
l: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
l: 631-435-6000			Sweden - Stockholm
in Jose, CA			Tel: 46-8-5090-4654
l: 408-735-9110			UK - Wokingham
			Tel: 44-118-921-5800
l: 408-436-4270			F 44 440 001 FEET
anada - Toronto di: 905-695-1980			Fax: 44-118-921-5820