

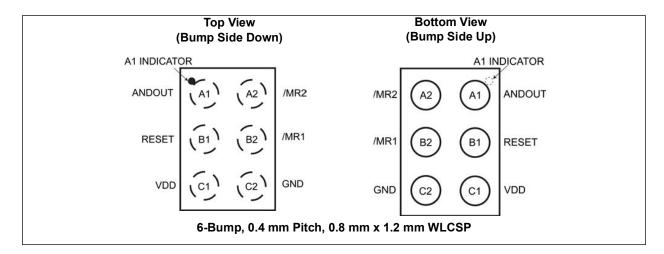
# **MIC2782**

# **Dual-Input Push Button Reset IC** with Immediate and Delayed Outputs

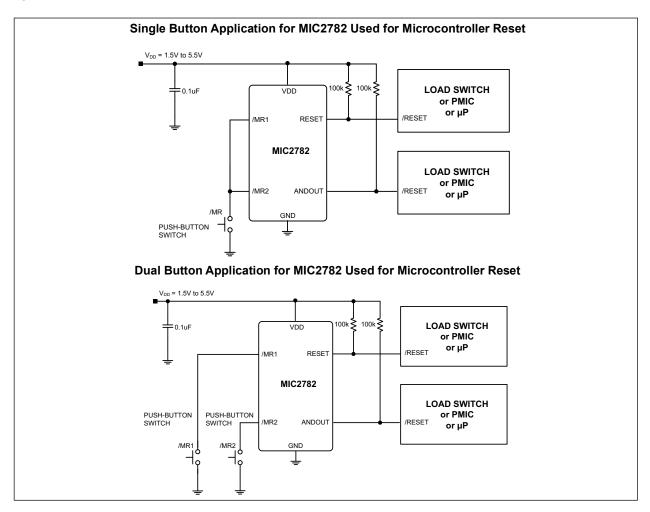
#### **Features**

- · 1.5V to 5.5V Operating Supply Voltage
- 2.2 µA Supply Current with /MR1, /MR2 Not Asserted
- Factory-Programmed Setup Periods of 6s, 8s, 10s, or 12s
- Factory-Programmed Reset Timeout Periods of 0.5s, 1s, or 2s
- Integrated 65 k $\Omega$  /MR1 and /MR2 Pull-Up Resistors
- Supports Single Push-Button Reset with /MR1 Tied to /MR2
- RESET Asserts after /MR1 and /MR2 are Asserted Low for a Setup Period
- ANDOUT Asserts after /MR1 and /MR2 are Asserted Low for a Debounce Time (1.5 ms)
- · Open-Drain RESET and ANDOUT Outputs
- 6-Bump, 0.4 mm Pitch, 0.8 mm x 1.2 mm Wafer Level Chip Scale Package (WLCSP)

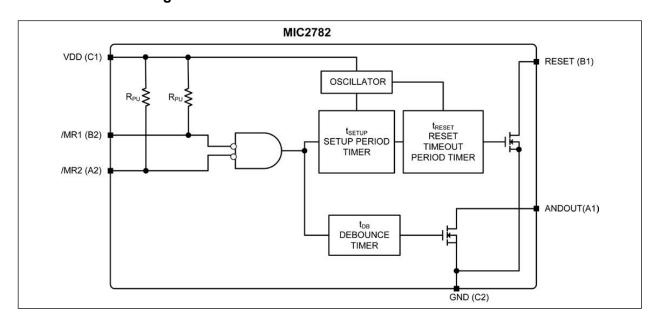
## **Applications**


- Smartphones
- Tablets
- eBooks
- Portable Games
- · Portable Navigation Devices

## **General Description**


The MIC2782 is a two input, two output push-button reset IC. It will generate a reset pulse for a factory-programmed reset timeout period after both manual reset inputs have been held to a logic-low for the factory-programmed setup period. The MIC2782 also has an ANDOUT logic output that will activate if both inputs are held low for longer than a debounce time (1.5 ms) and deactivate if one or both inputs are released for longer than a debounce time (1.5 ms). The RESET and ANDOUT outputs are active-low, open-drain NMOS outputs.

The MIC2782 operates over the 1.5V to 5.5V supply voltage range, consuming 2.2  $\mu$ A of supply current at 3.3V. The device features 65 k $\Omega$  internal pull-up resistors on both of the inputs (/MR1 and /MR2). The device offers factory programmed setup periods of 6s, 8s, 10s, or 12s and reset timeout periods of 0.5s, 1s, or 2s. It is available in a space saving, 6-bump, 0.4 mm pitch, 0.8 mm x 1.2 mm wafer level chip scale package.


## **Package Type**



## **Typical Application Circuits**



## **Functional Block Diagram**



#### 1.0 ELECTRICAL CHARACTERISTICS

#### **Absolute Maximum Ratings †**

| Supply Voltage (V <sub>DD</sub> )                               | GND to +6.0V        |
|-----------------------------------------------------------------|---------------------|
| Input Voltage (V <sub>/MR1</sub> , V <sub>/MR2</sub> )          |                     |
| NMOS Output Voltage (V <sub>RESET</sub> , V <sub>ANDOUT</sub> ) | GND – 0.3V to +6.0V |
| ESD Rating (Human Body Model, Note 1)                           | 2 kV                |
| ESD Rating (Machine Model)                                      | 200V                |

#### **Operating Ratings ‡**

| Supply Voltage (V <sub>DD</sub> )                      | +1.5V to +5.5V |
|--------------------------------------------------------|----------------|
| Input Voltage (V <sub>/MR1</sub> , V <sub>/MR2</sub> ) |                |
| - · · · · · · · · · · · · · · · · · · ·                |                |

**† Notice:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

**‡ Notice:** The device is not guaranteed to function outside its operating ratings.

**Note 1:** Device is ESD sensitive. Handling precautions are recommended. Human body model, 1.5 k $\Omega$  in series with 100 pF.

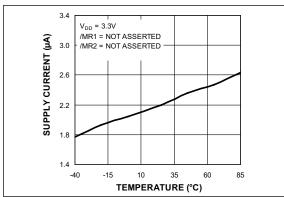
#### **ELECTRICAL CHARACTERISTICS**

For typical values,  $V_{DD}$  = 3.3V, /MR1 = /MR2 = Open,  $T_J$  = +25°C, **bold** values valid for -40°C  $\leq T_J \leq$  +85°C; unless noted. Note 1

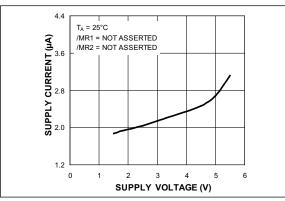
| Parameter                   | Symbol                                                   | Min. | Тур. | Max. | Units | Conditions                                         |  |
|-----------------------------|----------------------------------------------------------|------|------|------|-------|----------------------------------------------------|--|
| Power Supply Input          |                                                          |      |      |      |       |                                                    |  |
| Supply Voltage              | $V_{DD}$                                                 | 1.5  | _    | 5.5  | V     | Reset output valid                                 |  |
|                             |                                                          | _    | 2.2  | 4.0  |       | $V_{DD} = 3.3V$ , /MR1 = /MR2 = $V_{DD}$           |  |
| Supply Current              | I <sub>DD</sub>                                          | _    | 3.2  | 5.0  | μΑ    | $V_{DD} = 5.0V$ , /MR1 = /MR2 = $V_{DD}$           |  |
|                             |                                                          | _    | 120  | _    |       | $V_{DD} = 3.3V$ , /MR1 = /MR2 = GND                |  |
| Reset Time                  |                                                          |      |      |      |       |                                                    |  |
|                             |                                                          | 5.4  | 6    | 6.6  |       | Ordering option: C                                 |  |
| Setup Period                | <sub>+</sub> [                                           | 7.2  | 8    | 8.8  | sec.  | Ordering option: D                                 |  |
| Getup i enou                | t <sub>SETUP</sub>                                       | 9.0  | 10   | 11   | 360.  | Ordering option: E                                 |  |
|                             |                                                          | 10.8 | 12   | 13.2 |       | Ordering option: F                                 |  |
|                             | t <sub>RESET</sub>                                       | 0.4  | 0.5  | 0.6  | sec.  | Ordering option: L                                 |  |
| Reset Timeout Period        |                                                          | 0.9  | 1    | 1.1  |       | Ordering option: M                                 |  |
|                             |                                                          | 1.8  | 2    | 2.2  |       | Ordering option: R                                 |  |
| ANDOUT Debounce Time        | t <sub>DB</sub>                                          | 1    | 1.5  | 2    | ms    | $V_{/MR1,2} < (V_{IL} - 100 \text{ mV})$           |  |
|                             |                                                          | _    | _    | 0.3  |       | V <sub>DD</sub> = 4.5V, I <sub>SINK</sub> = 1.6 mA |  |
| Output Low Voltage          | V <sub>OL</sub>                                          | _    | _    | 0.3  | V     | V <sub>DD</sub> = 3.3V, I <sub>SINK</sub> = 1.2 mA |  |
|                             |                                                          | _    |      | 0.3  |       | V <sub>DD</sub> = 1.5V, I <sub>SINK</sub> = 0.5 mA |  |
| Open-Drain Leakage Current  | 1, 5,14,05                                               |      |      | 300  | nA    | RESET, ANDOUT Inactive                             |  |
| Open-Brain Edakage Garrent  | pen-Drain Leakage Current   I <sub>LEAKAGE</sub>   — — — |      |      | 000  | 117 \ | V <sub>RESET</sub> , V <sub>ANDOUT</sub> = 5.5V    |  |
| /MR1, /MR2 Input            | /MR1, /MR2 Input                                         |      |      |      |       |                                                    |  |
| Input High Voltage          | V <sub>IH</sub>                                          | 1.2  | _    | _    | V     | _                                                  |  |
| Input Low Voltage           | V <sub>IL</sub>                                          |      | _    | 0.4  | V     | _                                                  |  |
| Internal Pull-Up Resistance | R <sub>PU</sub>                                          | 55   | 65   | 75   | kΩ    | For /MR1, /MR2                                     |  |

Note 1: Specification for packaged product only.

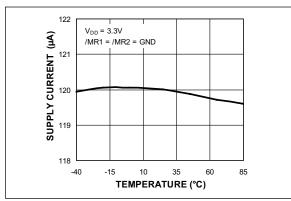
## **MIC2782**


## **TEMPERATURE SPECIFICATIONS**

| Parameters                       | Sym.              | Min. | Тур. | Max. | Units | Conditions         |
|----------------------------------|-------------------|------|------|------|-------|--------------------|
| Temperature Ranges               |                   |      |      |      |       |                    |
| Junction Temperature Range       | TJ                | -40  | _    | +85  | °C    | _                  |
| Storage Temperature Range        | T <sub>S</sub>    | -55  | _    | +150 | °C    | _                  |
| Lead Temperature                 | T <sub>LEAD</sub> |      | _    | +260 | °C    | Soldering, 10 sec. |
| Package Thermal Resistances      |                   |      |      |      |       |                    |
| Thermal Resistance, 6-Bump WLCSP | $\theta_{JA}$     | _    | 125  | _    | °C/W  | _                  |


#### 2.0 TYPICAL PERFORMANCE CURVES

Note:


The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.



**FIGURE 2-1:**  $V_{DD}$  Supply Current vs. Temperature.



**FIGURE 2-2:** V<sub>DD</sub> Supply Current vs. Supply Voltage.



**FIGURE 2-3:** Supply Current for /MR1 and /MR2 Inputs Low vs. Temperature.

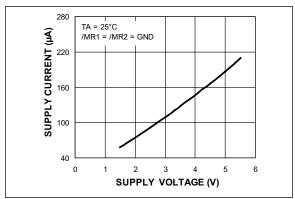



FIGURE 2-4: Supply Current for /MR1 and /MR2 Inputs Low vs. Supply Voltage.



**FIGURE 2-5:** Setup Period vs. Temperature.

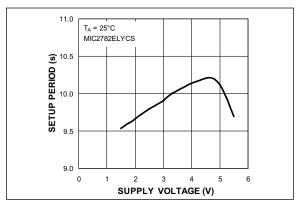
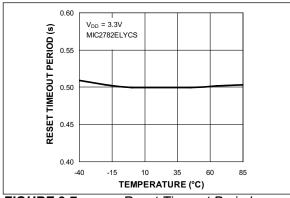




FIGURE 2-6: Setup Period vs. Supply Voltage.



**FIGURE 2-7:** Reset Timeout Period vs. Temperature.

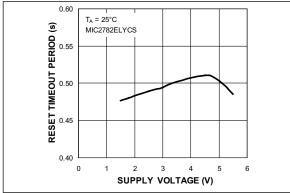
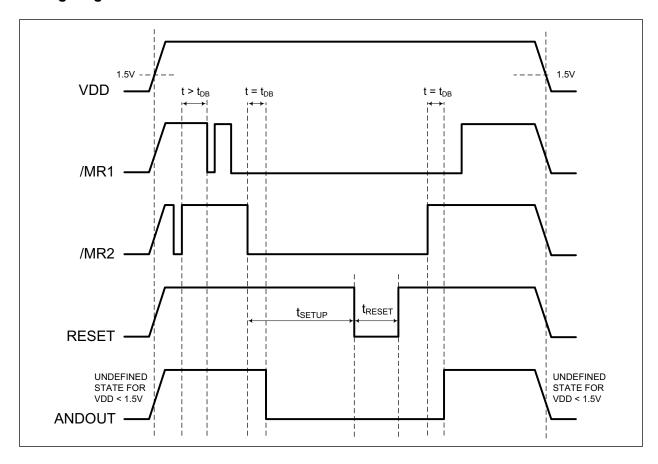



FIGURE 2-8: Reset Timeout Period vs. Supply Voltage.


## 3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

| Pin Number | Pin Name | Description                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1         | ANDOUT   | NMOS Open-Drain Output, Active-Low. Asserts low 1.5 ms after /MR1 and /MR2 are both asserted low. Connect a resistor greater than 5 k $\Omega$ from the ANDOUT pin to VDD in order to pull up the ANDOUT output voltage when inactive. No ESD diode from ANDOUT to VDD. Please see the Functional Description and Timing Diagram sections for further details of how the ANDOUT output functions.                    |
| A2         | /MR2     | Manual Reset Input 2, Active-Low. Internal 65 k $\Omega$ (typical) pull-up resistor to VDD. Pulling both manual reset inputs low for longer than the setup period causes one RESET output pulse for the reset timeout delay period.                                                                                                                                                                                  |
| B1         | RESET    | NMOS Open-Drain Output, Active-Low. Asserts low after /MR1 and /MR2 have both asserted low for longer than setup period. Connect a resistor greater than 5 k $\Omega$ from the RESET pin to VDD in order to pull up the RESET output voltage when inactive. No ESD diode from RESET to VDD. Please see the Functional Description and Timing Diagram sections for further details of how the RESET output functions. |
| B2         | /MR1     | Manual Reset Input 1, Active-Low. Internal 65 k $\Omega$ (typical) pull-up resistor to VDD. Pulling both manual reset inputs low for longer than the setup period causes one RESET output pulse for the reset timeout delay period.                                                                                                                                                                                  |
| C1         | VDD      | Supply Voltage. Bypass to ground with minimum 0.1 µF capacitor.                                                                                                                                                                                                                                                                                                                                                      |
| C2         | GND      | Supply Ground.                                                                                                                                                                                                                                                                                                                                                                                                       |

## **Timing Diagram**



#### 4.0 FUNCTIONAL DESCRIPTION

The MIC2782 is a dual push-button input reset IC with extended setup delay times. It is used for generating a hard reset for microcontrollers, PMICs, or load disconnect switches. The dual manual reset inputs and long setup delay times help protect against accidental system resets. The fixed reset timeout period allows for more predictable phone or tablet operation during hardware resets. It is used in applications such as smartphones, tablets, personal navigation devices, MP3 players, and set-top boxes (STB).

### 4.1 General Functionality

As shown in Figure 4-1, if both /MR1 and /MR2 are asserted low for longer than the setup period ( $t_{SETUP}$ ), the RESET output will be asserted (logic-level low) for a reset timeout period ( $t_{RESET}$ ). During the setup period, if either of the /MR1 or /MR2 inputs are deasserted high, then the setup period timer will be reset. To assert the RESET output low again, both the /MR1 and /MR2 inputs will have to be asserted low together for the full duration of the setup period.

If both /MR1 and /MR2 are asserted low for longer than the debounce time ( $t_{DB}$ ), then the ANDOUT output will be asserted, (logic-level low). ANDOUT will remain asserted low as long as both the /MR1 and /MR2 inputs are asserted low. If either the /MR1 or /MR2 are deasserted for longer that the debounce time ( $t_{DB}$ ), then the ANDOUT output will deassert high.

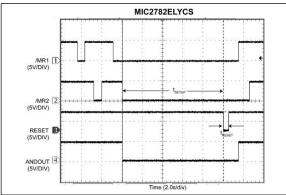



FIGURE 4-1: Manual Reset Function.

Keeping both manual reset inputs low for a longer time does not generate additional RESET output pulses. Deasserting either manual reset input during the RESET pulse duration, will not reset the setup timer. After the RESET pin has deasserted high, both the manual reset inputs must be held high for more than a debounce time to reset the setup timer.

ANDOUT debounce time is a de-glitch time, typically 1.5 ms, that senses the asserting of both manual reset inputs low together. A de-glitch time is needed if the manual reset inputs come from noisy push-button

sources. If either manual reset inputs are asserted (or deasserted) for less than a debounce time, the ANDOUT output will not respond.

## 4.2 Dual Manual Reset Inputs (/MR1, /MR2)

The /MR1, /MR2 are active-low manual inputs that have integrated 65 k $\Omega$  pull-up resistors to the VDD power supply. If both inputs are asserted (logic-level low) for a setup period ( $t_{SETUP}$ ), only one reset pulse, of width  $t_{RESET}$ , is generated. The behavior of the RESET and ANDOUT outputs is independent of the order in which the /MR1, /MR2 inputs are driven low. The MIC2782 consumes only 2  $\mu$ A when /MR1 and /MR2 manual inputs are deasserted (logic-level high) together. Current consumption is typically 120  $\mu$ A when both manual inputs are asserted low together and 55  $\mu$ A when only one of the manual inputs is asserted low while the other manual input is deasserted high.

## 4.3 Outputs (RESET and ANDOUT)

The RESET and ANDOUT outputs are simple open-drain N-channel MOSFET structures that require a pull-up resistor. For most applications, the pull-up voltage will be the same as the power supply that supplies  $V_{DD}$  to the MIC2782. As shown in Figure 4-2, it is possible to tie this resistor to a voltage other than  $V_{DD}$ , thus enabling level-shifting of the RESET or ANDOUT outputs. The pull-up voltage must be limited to 5.5V to avoid damaging the MIC2782. The pull-up resistor must be small enough to supply current to the inputs and leakage paths that are driven by the RESET or ANDOUT outputs. A recommended value is  $100~\mathrm{k}\Omega$ .

Because the RESET and ANDOUT outputs are open-drain, several reset sources can be wire-ORed, in parallel, to allow resets from multiple sources.

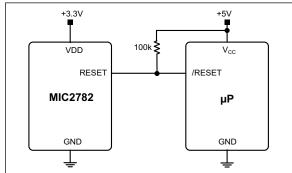



FIGURE 4-2: MIC2782 Used in Multiple Supply System.

## 4.4 Bypass Capacitor from VDD to

A  $0.1\mu F$  input bypass capacitor must be placed from VDD (Pin C1) to GND (Pin C2).

## 5.0 EVALUATION BOARD SCHEMATIC

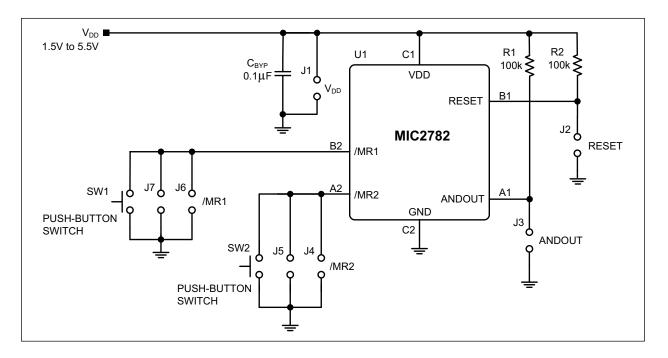



TABLE 5-1: BILL OF MATERIALS

| Item   | Part Number        | Manufacturer              | Description                      | Qty. |
|--------|--------------------|---------------------------|----------------------------------|------|
| C1     | GRM188R71C104KA01D | Murata                    | 0.1 μF, 16V capacitor, X7R, 0603 | 1    |
| R1, R2 | CRCW0603100KJNEA   | Vishay                    | 100 kΩ, 5% resistor, 0603        | 2    |
| U1     | MIC2782ELYCS       | Microchip Technology Inc. | Dual-Input Push Button Reset IC  | 1    |

## 6.0 PCB LAYOUT RECOMMENDATIONS

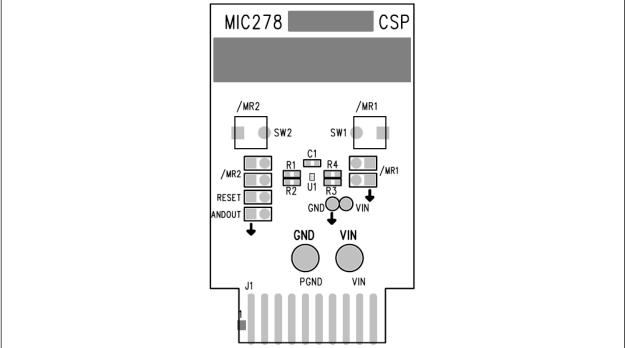



FIGURE 6-1: Top Silkscreen.

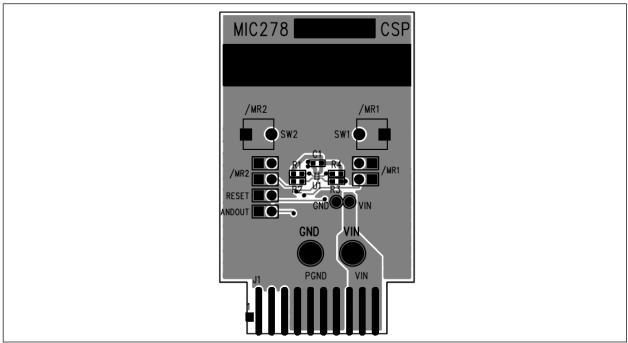



FIGURE 6-2: Copper Layer 1 (Top Layer).

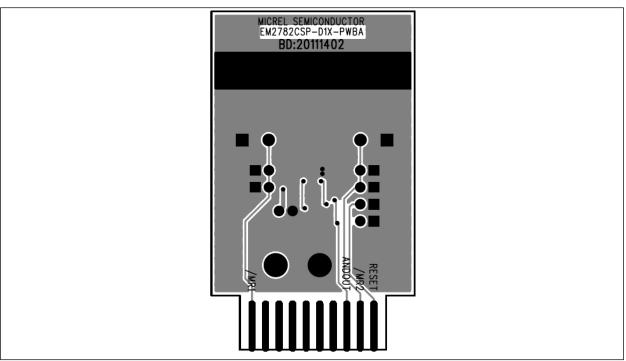



FIGURE 6-3: Copper Layer 2 (Bottom Layer).

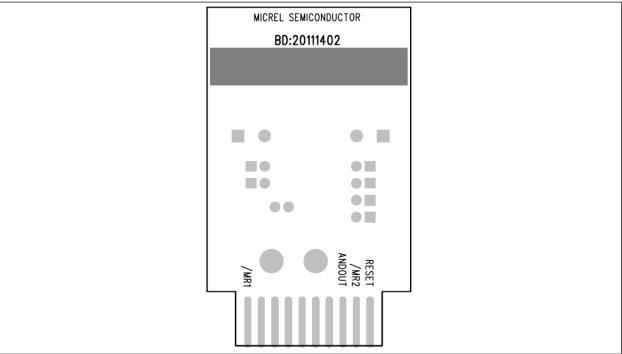
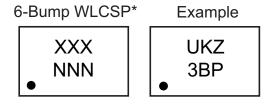




FIGURE 6-4: Bottom Silkscreen.

#### 7.0 PACKAGING INFORMATION

## 7.1 Package Marking Information

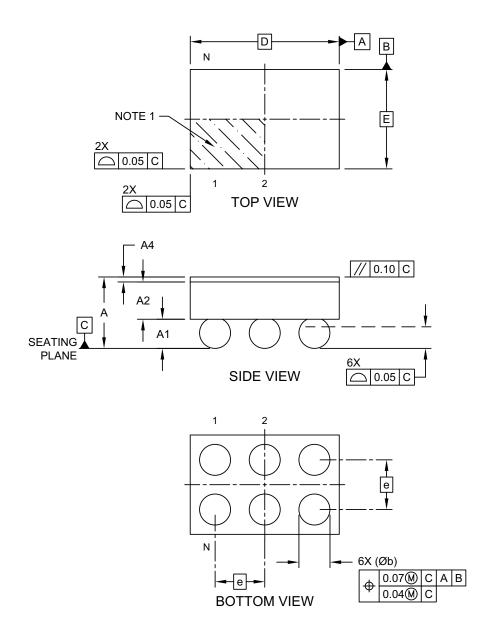


Legend: XX...X Product code or customer-specific information Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package. •, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

**Note**: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (\_) and/or Overbar (\_) symbol may not be to scale.

Note:


If the full seven-character YYWWNNN code cannot fit on the package, the following truncated codes are used based on the available marking space:

6 Characters = YWWNNN; 5 Characters = WWNNN; 4 Characters = WNNN; 3 Characters = NNN;

2 Characters = NN; 1 Character = N

## 6-Ball Wafer Level Chip Scale Package (FMA) - 1.2x0.8x0.575 mm Body [WLCSP] Micrel Legacy Package WLCSP080120D-6BL-PL-9

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



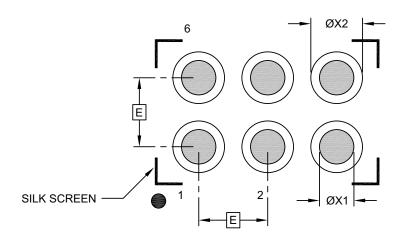
Microchip Technology Drawing C04-1188-FMA Rev B Sheet 1 of 2

### 6-Ball Wafer Level Chip Scale Package (FMA) - 1.2x0.8x0.575 mm Body [WLCSP] Micrel Legacy Package WLCSP080120D-6BL-PL-9

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                             | N      | ILLIMETER | S        |       |
|-----------------------------|--------|-----------|----------|-------|
| Dimension                   | Limits | MIN       | NOM      | MAX   |
| Number of Terminals         | N      |           | 6        |       |
| Pitch                       | е      |           | 0.40 BSC |       |
| Overall Height              | Α      | 0.475     | 0.525    | 0.575 |
| Standoff                    | A1     | 0.14      | 0.19     | 0.24  |
| Chip Thickness              | A2     | 0.26      | 0.31     | 0.36  |
| Backside Laminate Thickness | A4     | 0.020     | 0.025    | 0.030 |
| Overall Length              | D      | 1.20 BSC  |          |       |
| Overall Width               | Е      | 0.80 BSC  |          |       |
| Terminal Width              | b      | 0.25 REF  |          |       |


#### Notes:

- Pin 1 visual index feature may vary, but must be located within the hatched area.
   Dimensioning and tolerancing per ASME Y14.5M
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1188-FMA Rev B Sheet 2 of 2

## 6-Ball Wafer Level Chip Scale Package (FMA) - 1.2x0.8x0.575 mm Body [WLCSP] Micrel Legacy Package WLCSP080120D-6BL-PL-9

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### **RECOMMENDED LAND PATTERN**

|                              | N   | ILLIMETER | S   |      |
|------------------------------|-----|-----------|-----|------|
| Dimension                    | MIN | NOM       | MAX |      |
| Contact Pitch                | E   | 0.40 BSC  |     |      |
| Contact Pad Diameter         | X1  |           |     | 0.22 |
| Solder Mask Opening Diameter | X2  |           |     | 0.32 |

#### Notes

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-3188-FMA Rev B



NOTES:

## **APPENDIX A: REVISION HISTORY**

## **Revision A (October 2024)**

- Converted Micrel document MIC2782 to Microchip data sheet DS20006941A.
- Minor text changes throughout.



NOTES:

#### PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

| Part Num-<br>ber        | X                | X                     | X                                                  | <u>xx</u>                       | - <u>XX</u>   |
|-------------------------|------------------|-----------------------|----------------------------------------------------|---------------------------------|---------------|
| Device                  | Setup<br>Period  | Reset Til<br>out Peri |                                                    | Package                         | Media Type    |
| Device:                 | MIC2             | 782:                  | Dual-Input Pu                                      | sh Button Reset<br>ayed Outputs | IC with Imme- |
| Setup Period:           | C<br>D<br>E<br>F | =<br>=<br>=<br>=      | 6 seconds<br>8 seconds<br>10 seconds<br>12 seconds |                                 |               |
| Reset Timeout<br>Period | L<br>M<br>R      | =<br>=<br>=           | 0.5 second<br>1 second<br>2 seconds                |                                 |               |
| Temperature<br>Range:   | Y                | =                     | -40°C to +85°                                      | С                               |               |
| Package:                | CS               | =                     | 6-Bump 0.8 mm x 1.2 mm WLCSP                       |                                 |               |
| Media Type:             | TR               | =                     | 3,000/Reel                                         |                                 |               |

#### Examples:

a) MIC2782CLYCS-TR:

MIC2782, 6 second setup period, 0.5 second reset timeout, –40°C to +85°C Temp. Range, 6-Bump WLCSP, 3,000/Reel

b) MIC2782DRYCS-TR:

MIC2782, 8 second setup period, 2 second reset timeout, -40°C to +85°C Temp. Range, 6-Bump WLCSP, 3,000/Reel

c) MIC2782FLYCS-TR:

MIC2782, 12 second setup period, 0.5 second reset timeout, –40°C to +85°C Temp. Range, 6-Bump WLCSP, 3,000/Reel

d) MIC2782FRYCS-TR:

MIC2782, 12 second setup period, 2 second reset timeout, -40°C to +85°C Temp. Range, 6-Bump WLCSP, 3,000/Reel

Note:

Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

#### **MARKING CODES**

| Part Number  | Marking | Setup Period | Reset Timeout Period |
|--------------|---------|--------------|----------------------|
| MIC2782CLYCS | UJA     | 6 seconds    | 0.5 second           |
| MIC2782CRYCS | UJC     | 6 seconds    | 2 seconds            |
| MIC2782DLYCS | UKU     | 8 seconds    | 0.5 second           |
| MIC2782DRYCS | UJE     | 8 seconds    | 2 seconds            |
| MIC2782ELYCS | UKW     | 10 seconds   | 0.5 second           |
| MIC2782EMYCS | UKX     | 10 seconds   | 1 second             |
| MIC2782FLYCS | UJF     | 12 seconds   | 0.5 second           |
| MIC2782FRYCS | UKZ     | 12 seconds   | 2 seconds            |



NOTES:

#### Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
  mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
  continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at <a href="https://www.microchip.com/en-us/support/design-help/client-support-services">https://www.microchip.com/en-us/support/design-help/client-support-services</a>.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

#### **Trademarks**

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0453-2

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.



## **Worldwide Sales and Service**

#### **AMERICAS**

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

**Austin, TX** Tel: 512-257-3370

**Boston** 

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi. MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

**Raleigh, NC** Tel: 919-844-7510

New York, NY Tel: 631-435-6000

**San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270

**Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078

#### ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

**China - Beijing** Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

**China - Chongqing** Tel: 86-23-8980-9588

**China - Dongguan** Tel: 86-769-8702-9880

**China - Guangzhou** Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

**China - Shanghai** Tel: 86-21-3326-8000

**China - Shenyang** Tel: 86-24-2334-2829

**China - Shenzhen** Tel: 86-755-8864-2200

China - Suzhou

Tel: 86-186-6233-1526 China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

**China - Zhuhai** Tel: 86-756-3210040

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

**Japan - Osaka** Tel: 81-6-6152-7160

**Japan - Tokyo** Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

**Singapore** Tel: 65-6334-8870

**Taiwan - Hsin Chu** Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

**Taiwan - Taipei** Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

#### **EUROPE**

**Austria - Wels** Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

**Denmark - Copenhagen** Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

**Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Hod Hasharon Tel: 972-9-775-5100

Italy - Milan Tel: 39-0331-742611

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

**Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

**Poland - Warsaw** Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**Sweden - Gothenberg** Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820