

APPLICATION NOTE

SAM9G25 Schematic Checklist

Atmel | SMART Embedded MPU

Introduction

This application note is a schematic review checklist for systems based on the Atmel[®] | SMART ARM[®]-based SAM9G25 embedded MPU.

It gives requirements concerning the different pin connections that must be considered before starting any new board design and describes the minimum hardware resources required to quickly develop an application with the SAM9G25. It does not consider PCB layout constraints.

It also gives advice regarding low-power design constraints to minimize power consumption.

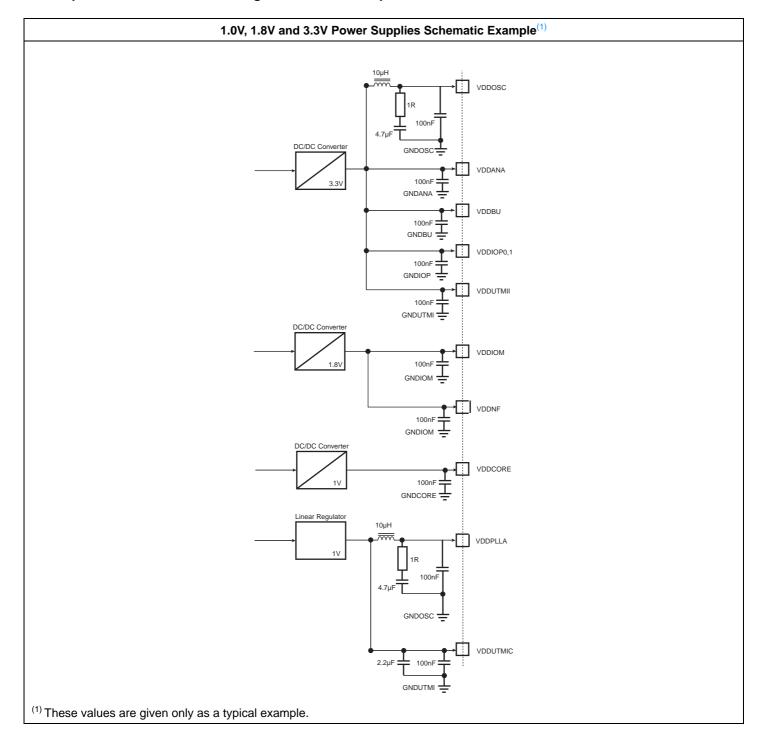
This application note is not intended to be exhaustive. Its goal is to cover as many configurations of use as possible.

The checklist has a column that can be used to track if the line item has been verified.

1. Associated Documentation

Before going further into this application note, it is strongly recommended to check the latest documents for the SAM9G25 on the Atmel web site.

Table 1-1 gives the associated documentation needed to support this application note.


Table 1-1. Associated Documentation

Information	Document Title
User Manual	
Electrical/Mechanical Characteristics	SAM9G25 Datasheet
Ordering Information	SAMISOZS Datastieet
Errata	
Internal architecture of processor	ARM9EJ-S™ Technical Reference Manual
ARM/Thumb instruction sets	ARM926EJ-S™ Technical Reference Manual
Embedded in-circuit-emulator	ARIVI920EJ-O TECHNICAI REIEFENCE MIANUAI
Evaluation Kit User Guide	SAM9G25-EK User Guide

2. Schematic Check List

CAUTION: The board design must comply with the powerup and powerdown sequence guidelines provided in the datasheet to guarantee reliable operation of the device.

Signal Name	Recommended Pin Connection	Description
VDD0005	0.9V to 1.1V	Powers the device. Decoupling/Filtering capacitors must be added to improve
VDDCORE	Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	startup stability and reduce source voltage drop. Supply ripple must not exceed 20 mVrms.
		Powers the PLLA cell.
VDDPLLA	0.9V to 1.1V Decoupling/filtering RLC circuit ⁽¹⁾	The VDDPLLA power supply pin draws small current, but it is noise sensitive. Care must be taken in VDDPLLA power supply routing, decoupling and also on bypass capacitors.
		Supply ripple must not exceed 10 mVrms.
VDDNF	1.65V to 1.95V or 3.0V to 3.6V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	The VDDNF power supply the NAND Flash I/Os.
VDDBU	1.8V to 3.6V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Powers the Backup unit. (Slow Clock Oscillator, On-chip RC and a part of the System Controller). Supply ripple must not exceed 30 mVrms.
VDDOSC	1.65V to 3.6V Decoupling/Filtering RLC circuit ⁽¹⁾	Powers the main oscillator cells. The VDDOSC power supply pin draws small current, but it is noise sensitive. Care must be taken in VDDOSC power supply routing, decoupling and also on bypass capacitors. Supply ripple must not exceed 30 mVrms.
VDDIOM	1.65V to 1.95V or 3.0V to 3.6V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Powers the External Memory Interface I/O lines. Dual voltage range supported. The I/O drives are selected by programming the EBI_DRIVE field in the CCFG_EBICSA register. At power-up, the high drive mode for 3.3V memories is selected. Decoupling/Filtering capacitors must be added to improve startup stability and reduce source voltage drop.
VDDUTMII	3V to 3.6V Decoupling capacitor (100 nF) ⁽¹⁾⁽²⁾	Powers the USB device and host UTMI+ interface. Decoupling/Filtering capacitors must be added to improve startup stability and reduce source voltage drop.

Signal Name	Recommended Pin Connection	Description
VDDUTMIC	0.9V to 1.1V Decoupling/Filtering capacitors (100 nF and 2.2µF) ⁽¹⁾⁽²⁾	Powers the USB device and host UTMI+ core. Decoupling/Filtering capacitors must be added to improve startup stability and reduce source voltage drop.
VDDIOP0 VDDIOP1	1.65V to 3.6V Decoupling/Filtering capacitors (100 nF) ⁽¹⁾⁽²⁾	Powers the peripherals I/O lines. Decoupling/Filtering capacitors must be added to improve startup stability and reduce source voltage drop.
VDDANA	3.0V to 3.6V Decoupling/Filtering RLC circuit ⁽¹⁾ Application dependent	Powers the Analog to Digital Converter (ADC) and some PIOD I/O lines.
GNDCORE	Core Chip Ground	GNDCORE pins are common to VDDCORE pins. GNDCORE pins should be connected as shortly as possible to the system ground plane.
GNDBU	Backup Ground	GNDBU pin is provided for VDDBU pins. GNDBU pin should be connected as shortly as possible to the system ground plane.
GNDIOM	DDR2 and EBI I/O Lines Ground	GNDIOM pins are common to VDDIOM and VDDNF pins. GNDIOM pins should be connected as shortly as possible to the system ground plane.
GNDIOP	Peripherals and ISI I/O lines Ground	GNDIOP pins are common to VDDIOP0, VDDIOP1 pins. GNDIOP pins should be connected as shortly as possible to the system ground plane.
GNDOSC	PLLA, PLLUTMI and Oscillator Ground	GNDOSC pin is provided for VDDOSC, VDDPLLA pins. GNDOSC pin should be connected as shortly as possible to the system ground plane.
GNDUTMI	UDPHS and UHPHS UTMI+ Core and interface Ground	GNDUTMI pins are common to VDDUTMII and VDDUTMIC pins. GNDUTMI pins should be connected as shortly as possible to the system ground plane.
GNDANA	Analog Ground	GNDANA pins are common to VDDANA pins. GNDANA pins should be connected as shortly as possible to the system ground plane.

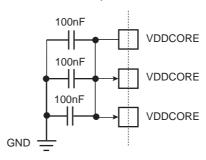
Note: For more information, refer to the section "Core Power Supply POR Characteristics" of the SAM9G25 Datasheet.

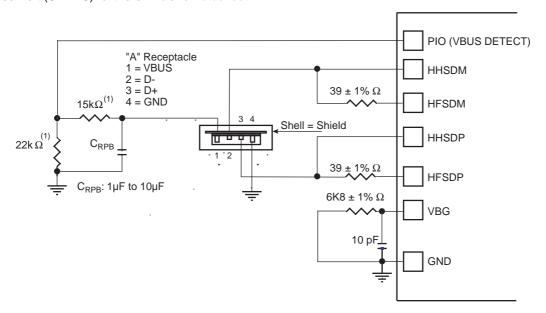
Signal Name	Recommended Pin Connection	Description
	Clock, Oscillator a	nd PLL
XIN XOUT 12 MHz Main Oscillator in Normal Mode	Clock, Oscillator and Crystals between 8 and 16 MHz USB High-speed (not Full-speed) Host and Device peripherals require a 12 MHz clock. Capacitors on XIN and XOUT (crystal load capacitance dependent) A 1 kOhm resistor must be added on XOUT for crystals with frequencies lower than 8 MHz.	Crystal load capacitance to check (C _{CRYSTAL}). SAM9G25 XIN XOUT GNDOSC C _{CRYSTAL} Example: for a 12 MHz crystal with a load capacitance of C _{CRYSTAL} = 15 pF, external capacitors are required: C _{LEXT} = 22 pF.
		Refer to the electrical characteristics in the SAM9G25 Datasheet.
XIN XOUT 12 MHz Main Oscillator in Bypass Mode	XIN: external clock source XOUT: can be left unconnected USB High-speed (not Full-speed) Host and Device peripherals require a 12 MHz clock.	VDDOSC square wave signal External clock source up to 50 MHz Duty Cycle: 40 to 60% Refer to the electrical characteristics in the SAM9G25 Datasheet.
XIN XOUT	XIN: can be left unconnected XOUT: can be left unconnected	Typical nominal frequency 12 MHz Duty Cycle: 45 to 55%
12 MHz Main Oscillator only	USB High-speed (not Full-speed) Host and Device peripherals require a 12 MHz clock.	Refer to the electrical characteristics in the SAM9G25 Datasheet.

	Signal Name	Recommended Pin Connection	Description
XIN32 32 XOUT32 Ca		32.768 kHz Crystal Capacitors on XIN32 and XOUT32 (crystal load capacitance dependent)	Crystal load capacitance to check (C _{CRYSTAL32}). SAM9G25 XIN32 C _{CRYSTAL32} Example: for a 32.768 kHz crystal with a load capacitance of C _{CRYSTAL32} = 12.5 pF, external capacitors are required: C _{LEXT32} = 19 pF. Refer to the electrical characteristics in the SAM9G25 Datasheet.
	XIN32 XOUT32 Slow Clock Oscillator in Bypass Mode	XIN32: external clock source XOUT32: can be left unconnected	VDDBU square wave signal External clock source up to 44 kHz Refer to the electrical characteristics in the SAM9G25 Datasheet.
	VBG	1.15V - 1.25V ⁽⁵⁾	Bias Voltage Reference for USB To reduce as much as possible the noise on VBG pin please check the layout consideration below: - VBG path as short as possible - ground connection to GNDUTMI VBG TO reduce as much as possible the noise on VBG pin please check the layout consideration below: - VBG path as short as possible - ground connection to GNDUTMI VBG TO reduce as much as possible the noise on VBG pin please on VBG pin please check the layout consideration below: - VBG path as short as possible - ground connection to GNDUTMI VBG TO PER

Signal Name Recommended Pin Connection		Description	
	ICE and JTAG	(3)	
тск	Pull-up (100 kOhm) ⁽¹⁾	This pin is a Schmitt trigger input. No internal pull-up resistor.	
TMS	Pull-up (100 kOhm) ⁽¹⁾	This pin is a Schmitt trigger input. No internal pull-up resistor.	
TDI	Pull-up (100 kOhm) ⁽¹⁾	This pin is a Schmitt trigger input. No internal pull-up resistor.	
TDO	Floating	Output driven at up to V _{DDIOP0}	
RTCK	Floating	Output driven at up to V _{DDIOP0}	
NTRST	Refer to the pin description of the SAM9G25 Datasheet.	This pin is a Schmitt trigger input. Internal pull-up resistor to V _{DDIOP0} (100 kOhm).	
JTAGSEL	In harsh environments, (4) it is strongly recommended to tie this pin to GNDBU if not used or to add an external low-value resistor (such as 1 kOhm).	Internal pull-down resistor to GNDBU (15 kOhm). Must be tied to V _{DDBU} to enter JTAG Boundary Scan.	
	Reset/Test		
NRST	Application dependent. Can be connected to a push button for hardware reset.	NRST is a bidirectional pin (Schmitt trigger input). It is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. By default, the User Reset is enabled after a General Reset so that it is possible for a component to assert low and reset the microcontroller. An internal pull-up resistor to V _{DDIOP0} (100 kOhm) is available for User Reset and External Reset control.	
TST	In harsh environments, (4) it is strongly recommended to tie this pin to GNDBU if not used or to add an external low-value resistor (such as 1 kOhm)	This pin is a Schmitt trigger input. Internal pull-down resistor to GNDBU (15 kOhm).	
BMS	Application dependent.	Must be tied to V _{DDIOP0} to boot from Embedded ROM. Must be tied to GNDIOP to boot from external memory (EBI Chip Select 0).	

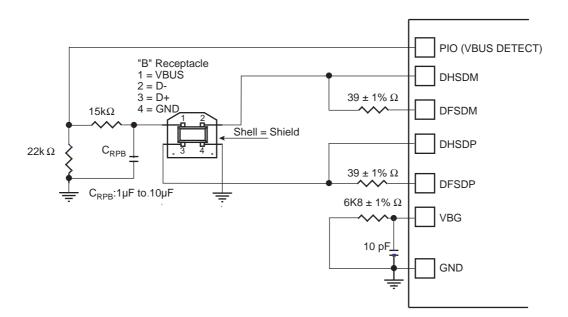
Signal Name	Recommended Pin Connection	Description
	Shutdown/Wakeup	Logic
SHDN	Application dependent. A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter providing the main power supplies.	This pin is a push-pull output. SHDN pin is driven low to GNDBU by the Shutdown Controller (SHDWC).
WKUP	0V to V _{DDBU}	This pin is an input-only. WKUP behavior can be configured through the Shutdown Controller (SHDWC).
	PIO	
PAx PBx	Application dependent.	All PIOs are pulled-up inputs (100 kOhms) at reset except those which are multiplexed with the address bus signals that require to be enabled as peripherals: Refer to the column "Reset State" of the Pin Description table in the I/O Description section of the SAM9G25 Datasheet.
PCx PDx		Schmitt Trigger on all inputs
		To reduce power consumption if not used, the concerned PIO can be configured as an output, driven at '0' with internal pull-up disabled.
	ADC	
TSADVREF	2.4V to VDDANA Decoupling/Filtering capacitors. Application dependent	ADVREF is a pure analog input. To reduce power consumption, if ADC is not used, connect ADVREF to GNDANA.


Signal Name	Recommended Pin Connection	Description		
EBI				
D0-D31	Application dependent.	Data Bus (D0–D31) D0–D15 lines are pulled-up inputs to V _{DDIOM} at reset. D16–D31 lines are pulled-up inputs to V _{DDNF} at reset. D16–D31 are multiplexed with the PIOD controller.		
A0-A25	Application dependent.	Address Bus (A0–A25) All address lines are driven to '0' at reset. A20–A25 are multiplexed with the PIOD controller.		
	DDR2 - SMC - SDRAM Controller -	NAND Flash Support		
	See "External Bus Interface (EBI) Hardv	vare Interface" on page 13.		
	USB High-speed Host	(UHPHS)		
HFSDPA/HFSDPB HHSDPA/HHSDPB	Application dependent. (5)	Integrated pull-down resistor to prevent overconsumption when the host is disconnected.		
HFSDMA/HFSDMB HHSDMA/HHSDMB	Application dependent. ⁽⁵⁾	Integrated pull-down resistor to prevent overconsumption when the host is disconnected.		
	USB Full-speed Host	(UHPHS)		
HFSDPC	Application dependent. ⁽⁵⁾	Integrated pull-down resistor to prevent overconsumption when the host is disconnected.		
HFSDMC	Application dependent. ⁽⁵⁾	Integrated pull-down resistor to prevent overconsumption when the host is disconnected.		


	Signal Name	Recommended Pin Connection	Description		
	USB High-speed Device (UDPHS)				
	Integrated programmable pull-up resistor.				
	DHSDM/DFSDP	Application dependent ⁽⁶⁾	Integrated programmable pull-down resistor to prevent overconsumption when the host is disconnected.		
			To reduce power consumption, if USB Device is not used, connect the embedded pull-up.		
	DHSDP/DFSDM	Application dependent ⁽⁶⁾	Integrated programmable pull-down resistor to prevent overconsumption when the host is disconnected.		
			To reduce power consumption, if USB Device is not used, connect the embedded pull-down.		

Notes:

- 1. These values are given only as a typical example.
- 2. Decoupling capacitors must be connected as close as possible to the microcontroller and on each concerned pin.



- 3. It is recommended to establish accessibility to a JTAG connector for debug in any case.
- 4. In a well-shielded environment subject to low magnetic and electric field interference, the pin may be left unconnected. In noisy environments, a connection to ground is recommended.
- Example of USB High-speed Host connection:
 A 39 Ohm serial termination resistor must be connected to HFSDPx and HFSDMx. Refer to the section "USB Host High Speed Port (UHPHS)" of the SAM9G25 Datasheet.

6. Typical USB High-speed Device connection: As there is an embedded pull-up, no external circuitry is necessary to enable and disable the 1.5 k Ohm pull-up. A 39 Ohm serial termination resistor must be connected to DFSDP and DFSDM. Refer to the section "USB High Speed Device Port (UDPHS)" of the SAM9G25 Datasheet.

3. External Bus Interface (EBI) Hardware Interface

The tables below detail the connections to be applied between the EBI pins and the external devices for each Memory Controller.

Table 3-1. EBI Pins and External Static Devices Connections

	Pins of the Interfaced Device					
Signals: EBI_	8-bit Static Device	2 x 8-bit Static Devices	16-bit Static Device	4 x 8-bit Static Devices	2 x 16-bit Static Devices	32-bit Static Device
Controller			S	МС		
D0 - D7	D0 - D7	D0 - D7	D0 - D7	D0 - D7	D0 - D7	D0 - D7
D8 - D15	-	D8 - D15	D8 - D15	D8 - D15	D8 - 15	D8 - 15
D16 - D23	-	_	_	D16 - D23	D16 - D23	D16 - D23
D24 - D31 ⁽⁵⁾	-	_	_	D24 - D31	D24 - D31	D24 - D31
A0/NBS0	A0	_	NLB	_	NLB ⁽³⁾	BE0
A1/NWR2/NBS2/DQ M2	A1	A0	AO	WE ⁽²⁾	NLB ⁽⁴⁾	BE2
A2 - A22 ⁽⁵⁾	A[2:22]	A[1:21]	A[1:21]	A[0:20]	A[0:20]	A[0:20]
A23 - A25 ⁽⁵⁾	A[23:25]	A[22:24]	A[22:24]	A[21:23]	A[21:23]	A[21:23]
NCS0	CS	cs	CS	CS	CS	CS
NCS1/DDRSDCS	CS	CS	CS	CS	CS	CS
NCS2 ⁽⁵⁾	CS	CS	CS	CS	CS	CS
NCS3/NANDCS	CS	CS	CS	CS	CS	CS
NCS4 ⁽⁵⁾	CS	CS	CS	CS	CS	CS
NCS5 ⁽⁵⁾⁾	CS	CS	CS	CS	CS	CS
NRD	OE	OE	OE	OE	OE	OE
NWR0/NWE	WE	WE ⁽¹⁾	WE	WE ⁽²⁾	WE	WE
NWR1/NBS1	-	WE ⁽¹⁾	NUB	WE ⁽²⁾	NUB ⁽³⁾	BE1
NWR3/NBS3/DQM3	-	_	_	WE ⁽²⁾	NUB ⁽⁴⁾	BE3

Notes: 1. NWR0 enables lower byte writes. NWR1 enables upper byte writes.

- 2. NWRx enables corresponding byte x writes (x = 0,1, 2 or 3).
- 3. NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
- 4. NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
- 5. Multiplexed pins with PD15-PD31.

Table 3-2. EBI Pins and External Device Connections

Signals:	Pins of the Interfaced Device			
EBI_	DDR2/LPDDR	SDRAM	NAND Flash	
Controller	DDRC	SDRAMC	NFC	
D0 - D15	D0 - D15	D0 - D15	NFD0-NFD15 ⁽¹⁾	
D16 - D31	-	D16 - D31	NFD0-NFD15 ⁽¹⁾ -	
A0/NBS0	-	-	-	
A1/NWR2/NBS2/DQM2	-	DQM2	_	
DQM0-DQM1	DQM0-DQM1	DQM0-DQM1	_	

Table 3-2. EBI Pins and External Device Connections (Continued)

Signals:	Pins of the Interfaced Device				
EBI_	DDR2/LPDDR	SDRAM	NAND Flash		
Controller	DDRC	SDRAMC	NFC		
DQS0-DQM1	DQS0-DQS1	-	-		
A2 - A10	A[0:8]	A[0:8]	_		
A11	A9	A9	-		
SDA10	A10	A10 A10			
A12	-	-	_		
A13 - A14	A[11:12]	A[11:12]	-		
A15	A13	A13	_		
A16/BA0	BA0	BA0	_		
A17/BA1	BA1	BA1	-		
A18/BA2	BA2	BA2	-		
A19-A20	-	-	_		
A21/NANDALE	-	-	ALE		
A22/NANDCLE	-	-	CLE		
A23 - A24	-	-	-		
A25	-	-	-		
NCS0	-	-	_		
NCS1/DDRSDCS	DDRCS	SDCS	_		
NCS2	-	-	-		
NCS3/NANDCS	-	-	CE		
NCS4	-	-	-		
NCS5	-	-	-		
NANDOE	-	-	OE		
NANDWE	-	-	WE		
NRD	-	-	-		
NWR0/NWE	-	-	_		
NWR1/NBS1	-	-	-		
NWR3/NBS3/DQM3	-	DQM3	-		
CFCE1	-	-	-		
CFCE2	-	-	_		
SDCK	CK	CK	_		
SDCK#	CK#	-	_		
SDCKE	CKE	CKE	_		
RAS	RAS	RAS	-		
CAS	CAS	CAS	-		
SDWE	WE	WE	_		
Pxx ⁽²⁾	-	-	CE		
Pxx ⁽²⁾	-	_	RDY		

Notes: 1. The switch NFD0_ON_D16 enables the user to select NAND Flash path on D0-D7 or D16-D23 depending on memory power supplies. This switch is located in the EBICSA register in the Bus Matrix User Interface.

2. Any PIO line.

4. SAM Boot Program Hardware Constraints

Refer to the Boot Strategies section of the SAM9G25 Datasheet for more details on the boot program.

4.1 SAM Boot Program Supported Crystals (MHz)

A 12 MHz crystal or external clock (in Bypass mode) is required in order to generate USB and PLL clocks correctly for the following boots.

4.2 NAND Flash Boot

Boot is possible if the first page contains a valid header or if it is ONFI-compliant. For more details, refer to the section NAND Flash Boot of the SAM9G25 Datasheet.

Booting on 16-bit NAND Flash devices is not possible.

Table 4-1. Pins Driven during NAND Flash Boot Program Execution

Peripheral	Pin	PIO Line
EBI CS3 SMC	NANDOE	PD0
EBI CS3 SMC	NANDWE	PD1
EBI CS3 SMC	NANDCS	PD4
EBI CS3 SMC	NANDALE	A21
EBI CS3 SMC	NANDCLE	A22
EBI CS3 SMC	Cmd/Addr/Data	D[7:0] or D[23:16]

4.3 SD Card Boot

SD Card Boot supports all SD Card memories compliant with SD Memory Card Specification V2.0. This includes SDHC cards.

Table 4-2. Pins Driven during SD Card Boot Program Execution

Peripheral	Pin	PIO Line
MCI0	MCI0_CK	PA17
MCI0	MCI0_CDA	PA16
MCI0	MCI0_DA0	PA15
MCI0	MCI0_DA1	PA18
MCI0	MCI0_DA2	PA19
MCI0	MCI0_DA3	PA20

4.4 SPI Flash Boot

Two kinds of SPI Flash are supported, SPI Serial Flash and SPI DataFlash.

The SPI Flash bootloader tries to boot on SPI0 Chip Select 0, first looking for SPI Serial Flash, and then for SPI DataFlash.

4.4.1 Supported DataFlash Devices

The SPI Flash Boot program supports the DataFlash devices listed below.

Table 4-3. DataFlash Device

Device	Density	Page Size (bytes)	Number of Pages
AT45DB011	1 Mbit	264	512
AT45DB021	2 Mbits	264	1024
AT45DB041	4 Mbits	264	2048
AT45DB081	8 Mbits	264	4096
AT45DB161	16 Mbits	528	4096
AT45DB321	32 Mbits	528	8192
AT45DB642	64 Mbits	1056	8192

4.4.2 Supported Serial Flash Devices

The SPI Flash Boot program supports all SPI Serial Flash devices responding correctly at both Get Status and Continuous Read commands.

Table 4-4. Pins Driven during Serial or DataFlash Boot Program Execution

Peripheral	Pin	PIO Line
SPI0	MOSI	PA12
SPI0	MISO	PA11
SPI0	SPCK	PA13
SPI0	NPCS0	PA14
SPI0	NPCS1	PA7

4.5 TWI EEPROM Boot

The TWI EEPROM Flash Boot program searches for a valid application in an EEPROM memory.

TWI EEPROM Boot supports all I²C-compatible EEPROM memories using a 7-bit device (address 0x50).

Table 4-5. Pins Driven during TWI EEPROM Boot Program Execution

Peripheral	Pin	PIO Line
TWI0	TWD0	PA30
TWIO	TWCK0	PA31

4.6 SAM-BA® Boot

The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port.

Table 4-6. Pins Driven during SAM-BA Boot Program Execution

Peripheral	Pin	PIO Line
DBGU	DRXD	PA9
DBGU	DTXD	PA10

Revision History

Table 4-7.Revision History

Doc. Rev	Comments
"XIN" "XOUT" : updated description Table 3-2 "EBI Pins and External Description D24" with "D16–D23".	"VBG": changed VBG voltage range to 1.15–1.25V. Updated description with USB information.
	"XIN" "XOUT": updated description with 1 kOhm resistor information.
	Table 3-2 "EBI Pins and External Device Connections": Note (1): replaced instance of "D16-D24" with "D16-D23".
	Updated Table 4-1 "Pins Driven during NAND Flash Boot Program Execution" .
	Updated Table 4-2 "Pins Driven during SD Card Boot Program Execution" .
	Renamed Section 4.4 to "SPI Flash Boot" (was "Serial and DataFlash Boot'). Updated section content.
11129A	First issue

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-11129B-ATARM-SAM9G25-Schematic-Checklist-Application Note_21-Apr-16.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION), DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.