

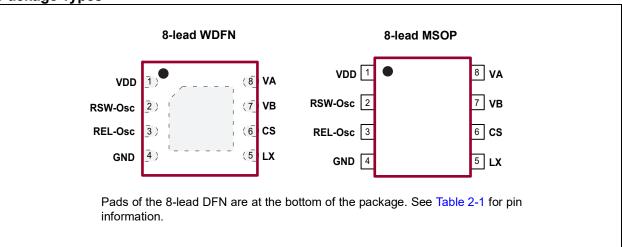
High-Voltage EL Lamp Driver for Low-Noise Applications

Features

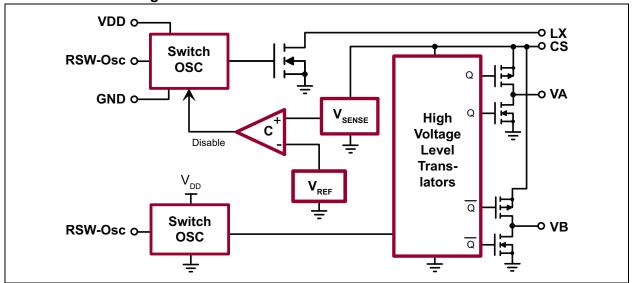
- · Patented Audible Noise Reduction
- · Patented Lamp Aging Compensation
- 210 V_{PP} Output Voltage for Higher Brightness
- · Patented Output Timing for High Efficiency
- · Single-cell Lithium Ion Compatible
- · 150 nA Shutdown Current
- Wide Input Voltage range of 1.8V to 5V
- Separately Adjustable Lamp and Converter Frequencies
- Output Voltage Regulation
- Split Supply Capability

Applications

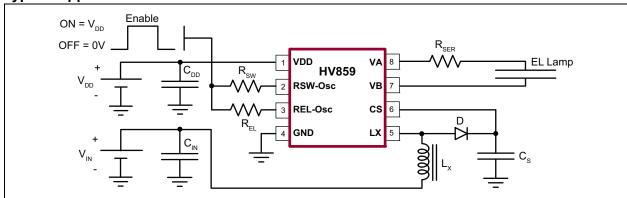
- · LCD Backlighting
- · Mobile Cellular Phone Keypads
- PDAs
- · Handheld Wireless Communication Products
- Global Positioning Systems (GPS)


General Description

The HV859 is a high-voltage driver designed for driving Electroluminescent (EL) lamps of up to 5 in². The input supply voltage range is from 1.8V to 5V. The device uses a single inductor and a minimum number of passive components. The nominal regulated output voltage that is applied to the EL lamp is ±105V. The chip can be enabled/disabled by connecting the resistor on RSW-Osc to VDD/Ground.


The HV859 has two internal oscillators, a switching MOSFET and a high-voltage EL lamp driver. The frequency for the switching MOSFET is set by an external resistor connected between the RSW-Osc pin and VDD pin. The EL lamp driver frequency is set by an external resistor connected between RSW-Osc pin and the VDD pin. An external inductor is connected between the L_X and VIN for split supply applications. A capacitor with a value between 0.003 μF to 0.1 μF , 200V rated, is connected between C_S and ground. The EL lamp is connected between VA and VB.

The switching MOSFET charges the external inductor and discharges it into the capacitor at C_S . Then, the voltage at C_S will start to increase. Once the voltage at C_S reaches a nominal value of 105V, the switching MOSFET is turned off to conserve power. The outputs VA and VB are configured as an H bridge and are switching in opposite states to achieve ± 105 V across the EL lamp.


Package Types

Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage, V _{DD}	
Output Voltage, V _{CS}	–0.5V to +130V
Operating Temperature Range, T _A	
Storage Temperature Range, T _S	
Power Dissipation:	
8-lead WDFN	1.6W
8-lead MSOP	300 mW

[†] Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	V_{DD}	1.8	_	5	V	
Output Drive Frequency	f _{EL}	_	_	1	kHz	
Operating Temperature	T _A	-40	_	+85	°C	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions unless otherwise specified, $V_{IN} = V_{DD} = 3.3V$ and $T_A = 25$ °C.

7.						
Parameter	Sym.	Min.	Тур.	Max	Unit	Conditions
On-resistance of Switching Transistor	R _{DS(ON)}	_	_	6	Ω	I = 100 mA
Maximum Output Regulation Voltage	V _{CS}	95	105	115	V	V _{DD} = 1.8V to 5V
Peak-to-Peak Output Voltage	V _A –V _B	190	210	230	V	V _{DD} = 1.8V to 5V
Quiescent V _{DD} Supply Current	I _{DDQ}	_	_	150	nA	R _{SW-Osc} = Low
Input Current going into the V _{DD} Pin	I _{DD}	_	_	150	μA	V _{DD} = 1.8V to 5V (See Figure 3-1.)
Input Current including Inductor Current	I _{IN}	_	26	35	mA	Note 1 (See Figure 3-1.)
Output Voltage on V _{CS}	V _{CS}	_	90	_	V	See Figure 3-1.
EL Lamp Frequency	f _{EL}	175	205	235	Hz	See Figure 3-1.
Switching Transistor Frequency	f _{SW}	_	77	_	kHz	
Switching Transistor Duty Cycle	D	_	88	_	%	See Figure 3-1.

Note 1: The inductor used is a 220 μ H inductor with a maximum DC resistance of 8.4 Ω .

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions		
TEMPERATURE RANGE								
Operating Temperature	T _A	-40	_	+85	°C			
Storage Temperature	T _S	-65	_	+150	°C			
PACKAGE THERMAL RESISTANCE								
8-lead WDFN	θ_{JA}	_	37	_	°C/W			
8-lead MSOP	θ_{JA}	_	216	_	°C/W			

ENABLE/DISABLE FUNCTION TABLE

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Input Low Voltage	EN-L	0	_	0.2	V	V _{DD} = 1.8V to 5V
Logic Input High Voltage	EN-H	V _{DD} - 0.2	_	V_{DD}	V	V _{DD} = 1.8V to 5V

2.0 PIN DESCRIPTION

The details on the pins of HV859 are listed in Table 2-1. See the location of pins in $\bf Package\ Types$.

TABLE 2-1: PIN FUNCTION TABLE

8-lead DFN Pin Number	8-lead MSOP Pin Number	Pin Name	Description
1	1	VDD	Supply voltage
2	2	RSW-Osc	The switching frequency of the converter is controlled via an external resistor, R_{SW} , connected between the REL-Osc and VDD pins of the device. The switching frequency increases as the R_{SW} decreases. With a given inductor, as the switching frequency increases, the amount of current drawn from the battery and the output voltage, V_{CS} , decrease.
3	3	REL-Osc	The EL lamp frequency is controlled via an external R_{EL} resistor connected between REL-Osc and VDD pins of the device. The lamp frequency increases as the R_{EL} decreases. As the EL lamp frequency increases, the amount of current drawn from the battery increases and the output voltage V_{CS} decreases. The color of the EL lamp is dependent on its frequency. A 2 M Ω resistor would provide a lamp frequency of 175 Hz to 235 Hz. Decreasing the R_{EL} resistor by a factor of two will increase the lamp frequency by a factor of two.
4	4	GND	Ground return for all internal circuitry. This pin must be electrically connected to the ground of the power train.
5	5	LX	The inductor L_X is used to boost the low-input voltage by inductive flyback. When the internal switch is on, the inductor is being charged. When the internal switch is off, the charge stored in the inductor is transferred to the high-voltage capacitor, C_S . The energy stored in the capacitor is connected to the internal H-bridge, and therefore to the EL lamp. In general, smaller value inductors, which can handle more current, are more suitable to drive larger-sized lamps. As the inductor value decreases, the switching frequency of the inductor controlled by R_{SW} should be increased to avoid saturation. A 220 μ H inductor with 8.4 Ω series DC resistance is typically recommended. For inductors with the same inductance value, but with
			lower series DC resistance, lower R _{SW} resistor value is needed to prevent high current draw and inductor saturation.
6	6	CS	3 nF-to-100 nF, 200V capacitor to GND is used to store the energy transferred from the inductor.
7	7	VB	Lamp connection
8	8	VA	Lamp connection

3.0 APPLICATION INFORMATION

3.1 Typical Application/Test Circuit

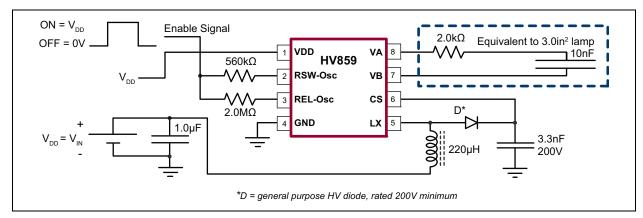


FIGURE 3-1: Typical Application/Test Circuit.

3.2 Split Supply Configuration

The HV859 can also be used for handheld devices operating from a battery where a regulated voltage is available. This is shown in Figure 3-2. The regulated voltage can be used to run the internal logic of the HV859. The amount of current necessary to run the internal logic is 150 μA max at a V_{DD} of 3V. Therefore, the regulated voltage could easily provide the current without being loaded down.

The HV859 can be easily enabled and disabled via a logic control signal on the R_{SW} and R_{EL} resistors as shown in Figure 3-2 below. The control signal can come from a microprocessor. R_{SW} and R_{EL} are typically very high values. Therefore, only 10's of microamperes will be drawn from the logic signal when it is at a Logic High (Enable) state. When the microprocessor signal is high, the device is enabled. When the signal is low, it is disabled.

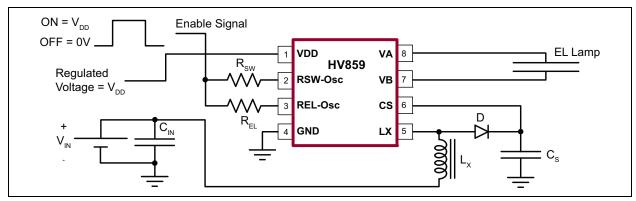


FIGURE 3-2: Split Supply and Enable/Disable Configuration.

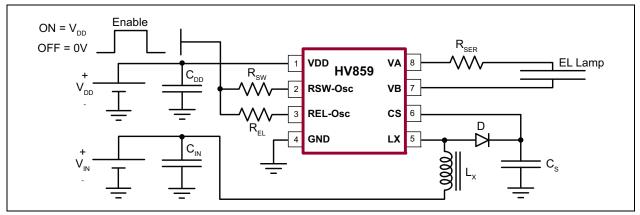


FIGURE 3-3: Typical Application Circuit for Audible Noise Reduction.

3.3 Audible Noise Reduction

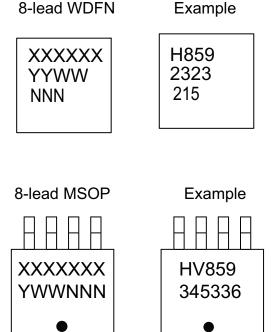
This section describes a patented method developed to reduce the audible noise emitted by EL lamps used in applications sensitive to audible noise. Figure 3-3 shows a general circuit schematic that uses the resistor, R_{SFR}, connected in series with the EL lamp.

3.3.1 HOW TO MINIMIZE EL LAMP AUDIBLE NOISE

Due to the EL lamp's construction, the lamp emits an audible noise when lit. This creates a major problem for applications where the EL lamp is used in devices placed close to the ear, such as cellular phones. The noisiest waveform is a square wave, and the quietest waveform has been assumed to be a sine wave.

An extensive research led to the development of a waveform that is quieter than a sine wave. The waveform takes the shape of approximately 2RC time constants for rising and 2RC time constants for falling, where C is the capacitance of the EL lamp, and R is the external resistor, $R_{\rm SER}$, connected in series with the EL lamp. This waveform has been proven to generate less noise than a sine wave.

The audible noise from the EL lamp can be set at a desired level based on the series resistor value used with the lamp. It is important to note that the use of this resistor will reduce the voltage across the lamp. Reduction of voltage across the lamp will also have another effect on the over all performance of the EL drivers and age compensation. This addresses an extremely important issue—EL lamp life—which most mobile phone manufacturers are concerned about.


As the EL lamp ages, its brightness and capacitance reduce. By using the RC model to decrease the audible noise emitted by the EL lamp, the voltage across the lamp increases as its capacitance diminishes. Therefore, the increase in voltage will compensate for the reduction of brightness. As a result, it will extend the EL lamp's half-life (half the original brightness).

3.3.2 EFFECT OF SERIES RESISTOR ON EL LAMP AUDIBLE NOISE AND BRIGHTNESS

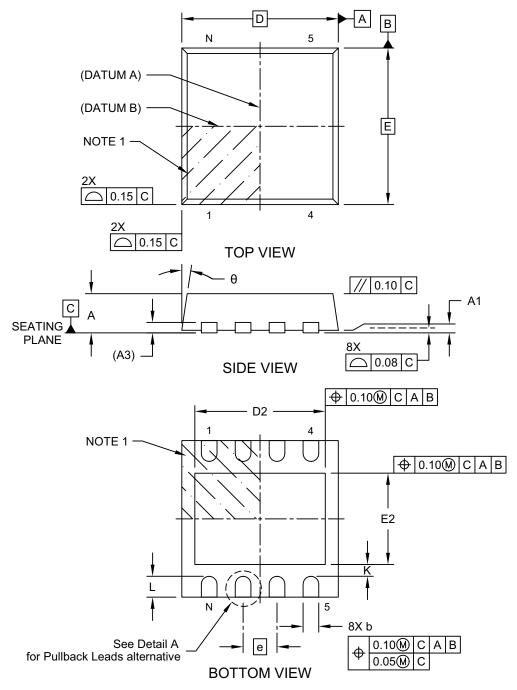
Increasing the value of the series resistor with the lamp reduces the EL lamp audible noise as well as its brightness. This is because the output voltage across the lamp goes low and the output waveform has rounder edges.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

By-free JEDEC® designator for Matte Tin (Sn)

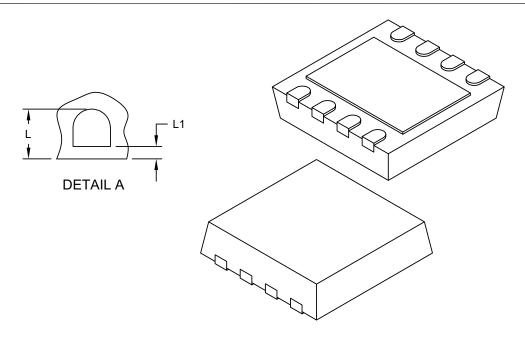

This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (UQ) - 3x3 mm Body [WDFN]; Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-291 Rev A Sheet 1 of 2

© 2021 Microchip Technology Inc.

8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (UQ) - 3x3 mm Body [WDFN]; Supertex Legacy Package

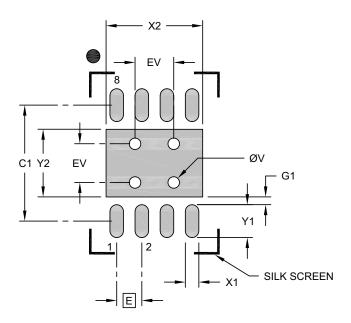
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N		8		
Pitch	е		0.65 BSC		
Overall Height	Α	0.70	0.75	0.80	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Length	D	3.00 BSC			
Exposed Pad Length	D2	1.60	ı	2.50	
Overall Width	Е		3.00 BSC		
Exposed Pad Width	E2	1.35	1	1.75	
Terminal Width	b	0.25	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Pullback	L1	-	-	0.15	
Mold Angle	θ	0°	7°	14°	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-291A Sheet 2 of 2

© 2021 Microchip Technology Inc.

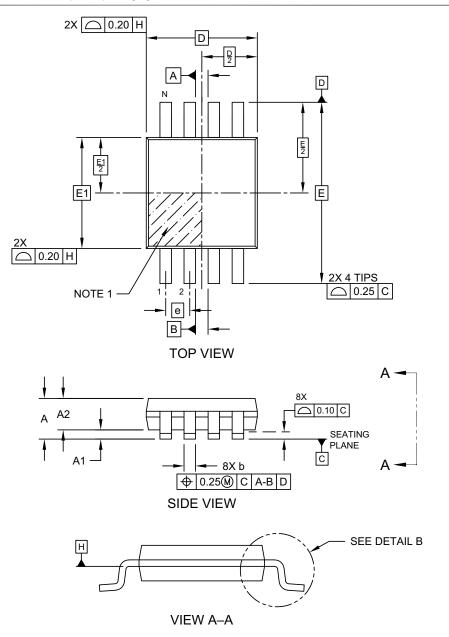
8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (UQ) - 3x3 mm Body [WDFN]; Supertex Legacy Package

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			2.50
Optional Center Pad Length	Y2			1.75
Contact Pad Spacing	C1		3.00	
Contact Pad Width (X8)	X1			0.35
Contact Pad Length (X8)	Y1			0.85
Contact Pad to Center Pad (X8)	G1	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

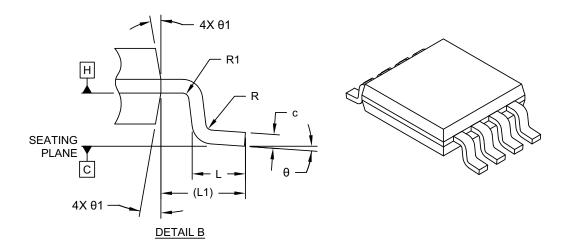

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2291 Rev A

© 2021 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-111-MS Rev F Sheet 1 of 2

© 2022 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

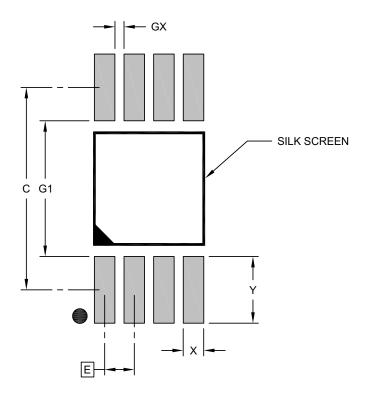
For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

	MILLIMETERS				
Dimens	ion Limits	MIN	NOM	MAX	
Number of Terminals	N		8		
Pitch	е		0.65 BSC		
Overall Height	Α	ı	_	1.10	
Standoff	A1	0.00	_	0.15	
Molded Package Thickness	A2	0.75	0.85	0.95	
Overall Length	D	3.00 BSC			
Overall Width	E	4.90 BSC			
Molded Package Width	E1		3.00 BSC		
Terminal Width	b	0.22	_	0.40	
Terminal Thickness	С	0.08	_	0.23	
Terminal Length	L	0.40	0.60	0.80	
Footprint	L1	0.95 REF			
Lead Bend Radius	R	0.07	_	_	
Lead Bend Radius	R1	0.07	_	_	
Foot Angle	θ	0°	_	8°	
Mold Draft Angle	θ1	5°	_	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111-MS Rev F Sheet 2 of 2

© 2022 Microchip Technology Inc.

8-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS				
Dimension	Dimension Limits		NOM	MAX		
Contact Pitch	E	0.65 BSC				
Contact Pad Spacing	С		4.40			
Contact Pad Width (X8)	Х			0.45		
Contact Pad Length (X8)	Υ			1.45		
Contact Pad to Contact Pad (X4)	G1	2.95				
Contact Pad to Contact Pad (X6)	GX	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2111-MS Rev F

© 2022 Microchip Technology Inc.

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2023)

- Converted Supertex Doc# DSFP-HV859 to Microchip DS20005711A
- Changed the quantity of the K7 package from 3000/Reel to 3300/Reel to align packaging specifications with the actual BQM
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO	PART NO. XX - X		XX		E	camples:	
Device	Package Options		Environmental Media Type	a)	HV859K7-G:	High-Voltage EL Lamp Driver for Low- Noise Applications, 8-lead WDFN Package, 3300/Reel	
Device:	HV859	=	High-Voltage EL Lamp Driver for Low-Noise Applications	b)	HV859MG-G:	High-Voltage EL Lamp Driver for Low Noise Applications, 8-lead MSOP Package, 2500/Reel	
Packages:	K7 MG	=	8-lead WDFN 8-lead MSOP				
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package				
Media Type:	(blank)	=	3300/Reel for a K7 Package 2500/Reel for an MG Package				

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, Bes Time, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2603-9

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252 China - Xiamen

Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820