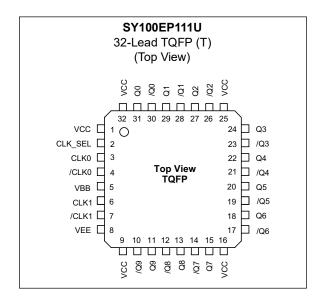


SY100EP111U

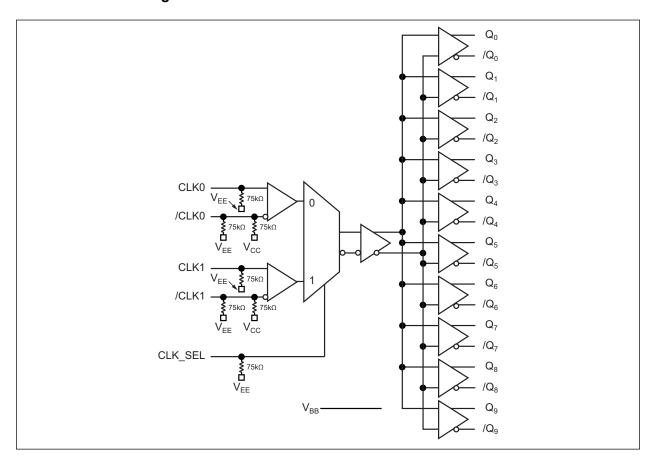
2.5V/3.3V 1:10 Differential LVPECL/LVECL/HSTL Clock Driver

Features

- · 2.5V and 3.3V Power Supply Options
- Ensured AC Parameters over Temperature:
 - f_{MAX} = 3 GHz
 - <25 ps Output-to-Output Skew
 - $< 250 \text{ ps } t_r/t_f$
 - <400 ps Propagation Delay
- Wide Temperature Range: -40°C to +85°C
- · Differential Design
- · VBB Output for Single-Ended Input Applications
- Fully Compatible with Industry-Standard 100K I/O Levels
- · Available in 32-Lead TQFP Package


General Description

The SY100EP111U is a high-speed, low skew 1-to-10 differential fanout buffer designed for clock distribution in new, high-performance systems. The internal 2:1 MUX allows the input to select between two differential clock sources.


The device is specifically designed for low skew. The interconnect scheme and metal layout are carefully optimized for minimal gate-to-gate skew within the device. Wafer characterization and process control ensure consistent distribution of propagation delay from lot to lot.

The VBB output is intended for use as a reference voltage for single-ended reception of ECL signals to that device only. When using VBB for this purpose, it is recommended that VBB is decoupled to VCC via a $0.01~\mu F$ capacitor.

Package Type

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Power Supply Voltage (V _{CC} – V _{EE})	+6.0V
Input Voltage (V _{CC} = 0V, V _{IN} not more negative than V _{EE})	
Input Voltage ($V_{EE} = 0V$, V_{IN} not more negative than V_{CC})	+6.0V to 0V
Continuous Output Current (I _{OUT})	50 mA
Surge Output Current (I _{OUT})	100 mA
Source or Sink Current on VBB Pin (I _{BB} Note 1)	±0.5 mA

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: Due to the limited drive capability, use for input of the same package only.

DC ELECTRICAL CHARACTERISTICS

 $T_A = -40$ °C to +85°C, unless otherwise stated. Note 1

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Dower Cumply Voltage	\/	2.375	_	3.8	V	LVPECL
Power Supply Voltage	V _{CC}	-3.8	_	-2.375	V	LVECL
		_	55	120		T _A = -40°C
Power Supply Current	I _{EE}	_	70	120	mA	T _A = +25°C
		_	85	120		T _A = +85°C
Input High Current	I _{IH}	_	_	150	μA	$V_{IN} = V_{IH}$
Input Low Current		0.5	_	_	^	CLK0, CLK1; V _{IN} = V _{IL}
Input Low Current	I _{IL}	-150	_	_	μΑ	/CLK0, /CLK1; V _{IN} = V _{IL}
Input Capacitance	C _{IN}	_	2	_	pF	_

Note 1: 100KEP circuits are designed to meet the DC specifications shown in the table above after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500 lfpm is maintained.

LVPECL DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 3.3V ±10%, V_{EE} = 0V; T_A = -40°C to +85°C, unless otherwise stated. Note 1

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
Input High Voltage	V _{IH}	2135	_	2420	mV	Single-Ended	
Input Low Voltage	V _{IL}	1355	_	1675	mV	Single-Ended	
Output Low Voltage	V _{OL}	1355	1480	1605	mV	50Ω to V _{CC} – 2V	
Output High Voltage	V _{OH}	2155	2280	2405	mV	50Ω to V _{CC} – 2V	
Reference Voltage	V _{BB}	1775	1875	1975	mV	Note 2	
Input High Voltage Common Mode Range	V _{IHCMR}	1.2	_	V _{CC}	V	Note 3	

- Note 1: 100KEP circuits are designed to meet the DC specifications shown in the table above after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500 lfpm is maintained. Input and output varies 1:1 with V_{CC}.
 - 2: Single-ended input operation is limited $V_{CC} \ge 3.0V$ in LVPECL mode. V_{BB} reference varies 1:1 with V_{CC} .
 - 3: V_{IHCMR(MIN)} varies 1:1 with V_{EE}, V_{IHCMR(MAX)} varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

LVPECL DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.5V ±5%, V_{EE} = 0V; T_A = -40°C to +85°C, unless otherwise stated. Note 1

· LL						
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input High Voltage	V _{IH}	1335	_	1620	mV	Single-Ended
Input Low Voltage	V _{IL}	555	_	875	mV	Single-Ended
Output Low Voltage	V _{OL}	555	680	805	mV	50Ω to V _{CC} – 2V
Output High Voltage	V _{OH}	1355	1480	1605	mV	50Ω to V _{CC} – 2V
Input High Voltage Common Mode Range	V _{IHCMR}	1.2	_	V _{CC}	٧	Note 2

- **Note 1:** 100KEP circuits are designed to meet the DC specifications shown in the table above after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500 lfpm is maintained. Input and output varies 1:1 with V_{CC}.
 - 2: V_{IHCMR(MIN)} varies 1:1 with V_{EE}, V_{IHCMR(MAX)} varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

LVECL DC ELECTRICAL CHARACTERISTICS

 V_{FF} = -2.375V to -3.8V, V_{CC} = 0V; T_A = -40°C to +85°C, unless otherwise stated. Note 1

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input High Voltage	V _{IH}	-1165	_	-880	mV	Single-Ended
Input Low Voltage	V _{IL}	-1945	_	-1625	mV	Single-Ended
Output Low Voltage	V _{OL}	-1945	-1820	-1695	mV	50Ω to V _{CC} – 2V
Output High Voltage	V _{OH}	-1145	-1020	-895	mV	50Ω to V _{CC} – 2V
Reference Voltage	V _{BB}	-1525	-1425	-1325	mV	Note 2
Input High Voltage Common Mode Range	V _{IHCMR}	V _{EE}	+ 1.2	0	V	Note 3

- **Note 1:** 100KEP circuits are designed to meet the DC specifications shown in the table above after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500 lfpm is maintained.
 - 2: Single-ended input operation is limited $V_{EE} \le -3.0V$ in LVECL mode.
 - 3: V_{IHCMR(MIN)} varies 1:1 with V_{EE}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

HSTL DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.375V to 3.8V; V_{EE} = 0V; T_A = -40°C to +85°C, unless otherwise stated.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Input High Voltage	V _{IH}	1200	_	_	mV	_
Input Low Voltage	V _{IL}	_	_	400	mV	_
Input Crossover Voltage	V _X	680	_	900	mV	_

AC ELECTRICAL CHARACTERISTICS

(LVPECL) V_{CC} = 2.375 to 3.8V, V_{EE} = 0V; (LVECL) V_{EE} = -2.375V to -3.8V, V_{CC} = 0V; T_A = -40°C to +85°C, unless otherwise stated.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Maximum Frequency	f _{MAX}	3	_	_	GHz	Note 1
Propagation Delay (Diff.)	t _{PD}	250	350	400	ps	_
Within-Device Skew	4	_	20	25	ps	Note 2
Part-to-Part Skew	^T SKEW	_	85	150	ps	Note 3
Cycle-to-Cycle Jitter	t _{JITTER}	_	0.2	<1	ps _{RMS}	_
Minimum Input Swing	V _{PP}	150	800	1200	mV	Note 4
Output Rise/Fall Time	t _r /t _f	100	170	250	ps	20% to 80%

Note 1: Measured with 750 mV clock signal, 50% duty cycle. All loading with a 50Ω to $V_{CC} - 2.0V$.

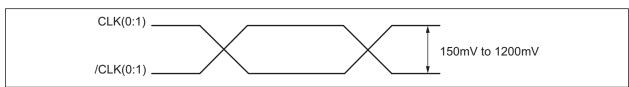
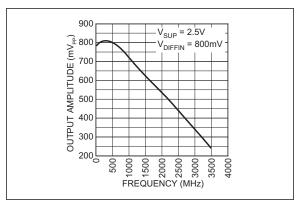
2: Input clock to any output (Q0 to Q9); Differential.

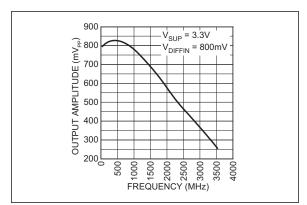
3: Measured for same transitions.

4: See Figure 1-1.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Storage Temperature Range	T _S	-65	_	+150	°C	_
Lead Temperature	T _{LEAD}	_	_	+260	°C	Soldering, 20 sec.
Ambient Temperature Range	T _A	-40	_	+85	°C	_
Package Thermal Resistances	•		•		•	•
		_	50	_	°C/W	Still-Air
Thermal Resistance, TQFP 32-Ld	θ_{JA}	_	42	_	°C/W	500 lfpm
	θ_{JC}	_	20	_	°C/W	Junction-to-Case


FIGURE 1-1: Timing Waveform.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Frequency Response vs. Output Amplitude.

FIGURE 2-2: Frequency Response vs. Output Amplitude.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
3, 4	CLK0, /CLK0	LVPECL, LVECL, HSTL Clock Inputs: CLK0 input includes a 75 k Ω pull-down. Default is low if left floating. /CLK0 includes an internal 75 k Ω pull-up and pull-down. Default state is $V_{CC}/2$.
6, 7	CLK1, /CLK1	LVPECL, LVECL, HSTL Clock Inputs: CLK input includes a 75 k Ω pull-down. Default is low if left floating. /CLK includes an internal 75 k Ω pull-up and pull-down. Default state is V _{CC} /2.
31, 29, 27, 24, 22, 20, 18, 15, 13, 11	Q0 to Q9	LVPECL/LVECL Outputs.
30, 28, 26, 23, 21, 19, 17, 14, 12, 10	/Q0 to /Q9	Complementary LVPECL/LVECL Outputs.
2	CLK_SEL	LVPECL/LVECL Clock Select Input: Internal 75 k Ω resistor connected to VEE. When left floating, the default condition is LOW.
5	VBB	Reference Voltage: AC-coupled or single-ended input applications.
1, 9, 16, 25, 32	VCC	Positive Power Supply: Bypass with 0.1 µF//0.01 µF low ESR capacitors.
8	VEE	Negative Power Supply: For LVPECL operation, connect to GND.

TABLE 3-2: TRUTH TABLE

CLK_SEL	Active Input
0	CLK0, /CLK0
1	CLK1, /CLK1

4.0 TERMINATION RECOMMENDATIONS

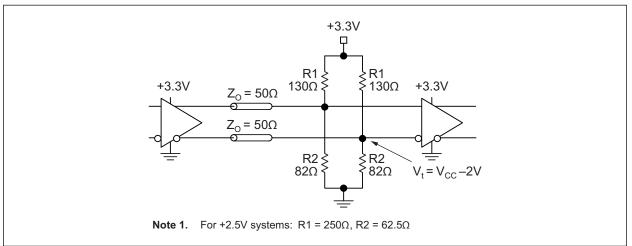


FIGURE 4-1: Parallel Termination: Thevenin Equivalent.

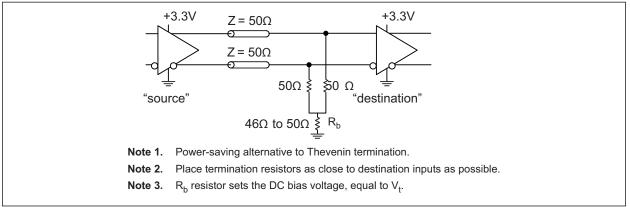


FIGURE 4-2: Parallel Termination: Three-Resistor.

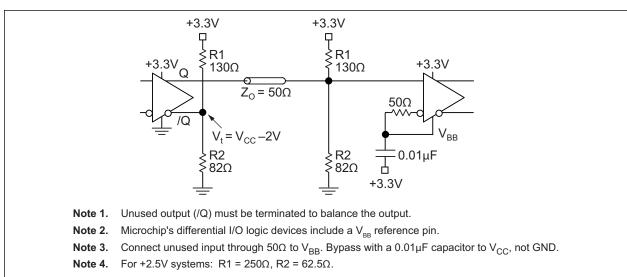


FIGURE 4-3: Terminating Unused I/O.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

32-Lead TQFP*

Example

Legend: XX...X Product code or customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

Pb-free JEDEC® designator for Matte Tin (Sn)

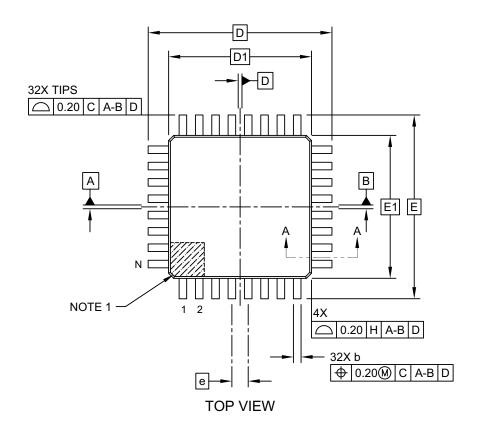
* This package is Pb-free. The Pb-free JEDEC designator (@3)

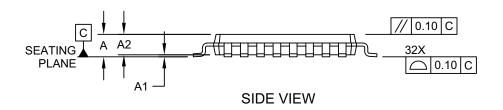
can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.

Underbar (_) and/or Overbar (¯) symbol may not be to scale.

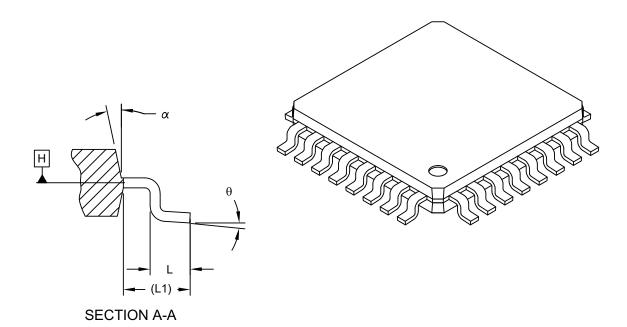

Note: If the full seven-character YYWWNNN code cannot fit on the package, the following truncated codes are used based on the available marking space:


6 Characters = YWWNNN; 5 Characters = WWNNN; 4 Characters = WNNN; 3 Characters = NNN;

2 Characters = NN; 1 Character = N

32-Lead Plastic Thin Quad Flatpack (T5X) - 7x7x1.0 mm Body [TQFP] 2.00 mm Footprint; Also Atmel Legacy Global Package Code AUT

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



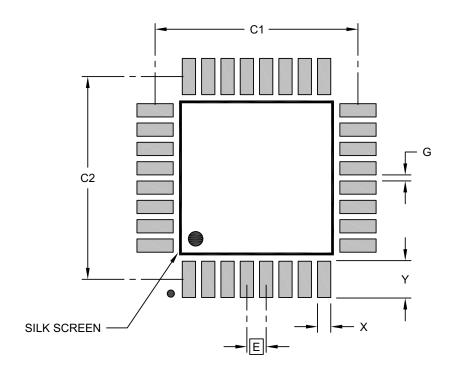
Microchip Technology Drawing C04-074-T5X Rev D Sheet 1 of 2

32-Lead Plastic Thin Quad Flatpack (T5X) - 7x7x1.0 mm Body [TQFP] 2.00 mm Footprint; Also Atmel Legacy Global Package Code AUT

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units **MILLIMETERS Dimension Limits** MIN NOM MAX Number of Leads Ν 32 Lead Pitch е 0.80 BSC Overall Height Α 1.20 Standoff Α1 0.05 0.15 Molded Package Thickness A2 0.95 1.00 1.05 Foot Length L 0.45 0.60 0.75 Footprint L1 1.00 REF θ 0° 7° Foot Angle Overall Width Ε 9.00 BSC Overall Length D 9.00 BSC Molded Package Width E1 7.00 BSC Molded Package Length D1 7.00 BSC Lead Width b 0.30 0.37 0.45 Mold Draft Angle Top 13°

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

32-Lead Plastic Thin Quad Flatpack (T5X) - 7x7x1.0 mm Body [TQFP] 2.00 mm Footprint; Also Atmel Legacy Global Package Code AUT

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.80 BSC	
Contact Pad Spacing	C1		8.40	
Contact Pad Spacing	C2		8.40	
Contact Pad Width (X32)	Х			0.55
Contact Pad Length (X32)	Υ			1.55
Contact Pad to Contact Pad (X28)	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2074-T5X Rev D

SY100EP111U

APPENDIX A: REVISION HISTORY

Revision A (December 2023)

- Converted Micrel document SY100EP111U to Microchip data sheet template DS20006840A.
- · Minor text changes throughout.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

Part No.	<u>X</u>	<u>X</u>	<u>X</u>	[- <u>XX</u>]	Exampl	es:
Device	Supply Voltage	Packag	e Temperature Range	Media Type	a) SY10	00EP111UTG:
	voltago		range		1	SY100EP111, 2.5V/3.3V Supply Voltage, 32-Lead TQFP, -40°C to +85°C Tempera- ture Range, 250/Tray
Device:	SY100EP111:		.3V 1:10 Differential LV Clock Driver	PECL/LVECL/	b) SY10	00EP111UTG-TR:
Supply Voltage:	U	=	2.5V/3.3V			SY100EP111, 2.5V/3.3V Supply Voltage, 32-Lead TQFP, –40°C to +85°C Temperature Range, 1,000/Reel
Package:	Т	=	32-Lead TQFP		Note 1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is
Temperature Range:	G	=	–40°C to +85°C			used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Media Type:	<blank> TR</blank>	= =	250/Tray 1,000/Reel			

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and
 under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPlC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-3597-0

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820