
AN2655
LAN9252 SDK Firmware API Guide
1.0 INTRODUCTION

This document describes the firmware APIs used to integrate the Microchip LAN9252 EtherCAT® slave controller (ESC)
with PIC32MX, which assist developers porting their EtherCAT slave stack application with LAN9252.

1.1 Terms and Abbreviations

• ETG - EtherCAT® Technology Group

• ESC - EtherCAT® Slave Controller

• EVB - Engineering Validation Board

• HAL - Hardware Abstraction Layer

• HBI - Host Bus Interface

• IDE - Integrated Development Environment

• PDI - Process Data Interface

• SDK - Software Development Kit

• SPI - Serial Protocol Interface

• SQI - Serial Quad Interface

• SSC - Slave Stack Code

1.2 References

The following documents should be referenced when using this application note. See your Microchip representative for
availability.

• LAN9252 Data Sheet

• AN1907 - Microchip LAN9252 Migration from Beckhoff ET1100

• AN1916 - AN1916 Integrating Microchip's LAN9252 SDK with Beckhoff's EtherCAT ®SSC

• AN1995 - LAN9252 SOC Porting Guidelines

• EtherCAT Slave Stack Code (SSC) ET9300 - www.ethercat.org

Author: Riyas Kattukandan
Microchip Technology Inc.
 2018 Microchip Technology Inc. DS00002655A-page 1

AN2655
2.0 LAN9252 GENERAL DESCRIPTION

The LAN9252 is a 2/3-port EtherCAT slave controller with dual integrated Ethernet PHYs that each contain a full-duplex
100BASE-TX transceiver and support 100-Mbps (100BASE-TX) operation.

LAN9252-based solutions can be implemented in the following modes:

Microcontroller Mode: The LAN9252 communicates with the microcontroller through an SRAM-like slave interface.
The simple, yet highly functional host bus interface provides a glue-less connection to most common 8- or 16-bit micro-
processors and microcontrollers, as well as 32-bit microprocessors with an 8- or 16-bit external bus.

Alternatively, the device can be accessed via SPI or Quad SPI, while also providing up to 16 inputs or outputs for general
purpose usage.

Expansion Mode: While the device is in SPI or Quad SPI mode, a third networking port can be enabled to provide an
additional MII port. This port can be connected to an external PHY to enable star or tree network topologies, or con-
nected to another LAN9252 to create a four-port solution. This port can be configured for the upstream or downstream
direction.

Digital I/O Mode: For simple digital modules without microcontrollers, the LAN9252 can operate in Digital I/O Mode
where 16 digital signals can be controlled or monitored by the EtherCAT master. Six control signals are also provided.

FIGURE 2-1: LAN9252 BLOCK DIAGRAM

LAN9252

EtherCAT® Slave Controller

Loopback

Loopback

Loopback

Auto
Forwarder

Auto
Forwarder

Auto
Forwarder

Port 0
Port 0

Port 2
Port 1

Registers/RAM

ESC Address Space

SyncManager

FMMU

Parallel Data
Interface

LED
Controller

I2C
EEPROM

System
Interrupt

Controller

System Clocks/
Reset Controller

100 PHY
w/ fiber

Registers

100 PHY
w/ fiber

Registers

To 8-/16-bit
Host Bus,
MII, SPI,
Digital IOs,
GPIOs

Ethernet

Ethernet

To optional LEDs To I2C IRQ
External

25-MHz Crystal
DS00002655A-page 2  2018 Microchip Technology Inc.

AN2655
Figure 2-2 shows the block diagram of the operation modes.

Slave stack code (SSC) is applicable in Microcontroller and Expansion modes where the Microprocessor/Microcontrol-
ler process data interface (PDI) is available.

SDK 1.3 only supports 32-bit architecture. However, for 8-bit and 16-bit architectures, it is necessary to change the
source code according to the compiler’s requirements.

System On Chip (SOC) MPUs/MCs can access LAN9252 using different types of PDIs like HBI, SPI, or SQI. Accessi-
bility of each ESC register using PDI is defined in the LAN9252 data sheet.

FIGURE 2-2: LAN9252 MODES OF OPERATION

Magnetics or
Fiber Xcvr LAN9252 Magnetics or

Fiber Xcvr

RJ45

or Fiber

RJ45

or Fiber

Microprocessor/
Microcontroller

Host Bus Interface

Microcontroller Mode
(via Host Bus Interface)

Digital I/O Mode

Magnetics or
Fiber Xcvr LAN9252 Magnetics or

Fiber Xcvr

RJ45

or Fiber

RJ45

or Fiber

Digital I/Os

Magnetics or
Fiber Xcvr LAN9252 Magnetics or

Fiber Xcvr

RJ45

or Fiber

RJ45

or Fiber

Microprocessor/
Microcontroller

SPI/Quad SPI

Microcontroller Mode
(via SPI)

GPIOs

Magnetics or
Fiber Xcvr LAN9252 Magnetics or

Fiber Xcvr

RJ45

or Fiber

RJ45

or Fiber

Microprocessor/
Microcontroller

SPI/Quad SPI

Expansion Mode

PHY

MII

Magnetics or
Fiber Xcvr

RJ45

or Fiber
 2018 Microchip Technology Inc. DS00002655A-page 3

AN2655
2.1 LAN9252 Register Classification

There are two types of registers available in the LAN9252:

• Directly accessible registers (LAN9252 Control and Status Registers (CSR))

• Indirectly accessible registers – (EtherCAT Status and Control registers - ESC). All EtherCAT core registers reside
under this group. The application can read and write EtherCAT core registers using LAN9252 CSR registers.

Note: Refer to the LAN9252 data sheet for a more detailed description of each register.

2.2 Interrupts

All interrupts must be configured during hardware initialization. Since SSC accesses ESC registers from both interrupt
context and polling mode, ECAT_CSR_CMD and ECAT_CSR_DATA registers must be protected; otherwise, it may cor-
rupt the SSC state machine routines.

For example, if an interrupt fires during reading of 0x120 (ESC) register under polling mode, soon after updating 0x120
(Address) into the ECAT_CSR_CMD register, then any ESC access (read/write) from the interrupt routine overwrites
the ECAT_CSR_CMD register (some other address, for example, 0x220), which overrides the ECAT_CSR_DATA reg-
ister.

Corruption of data because of interrupt fire can be avoided by disabling the interrupt routine while accessing any ESC
registers. However, any missed interrupts because of disabling the interrupts can be monitored by the interrupt line
(GPIO) after reading/writing EtherCAT core register.

Interrupt handler in SDK 1.x must be modified according to the host SOC/C.

TABLE 2-1: SYSTEM CONTROLS AND STATUS REGISTERS

Address Register Name (Symbol)

000h-01Ch EtherCAT Process RAM Read Data FIFO (ECAT_PRAM_RD_DATA)

020h-03Ch EtherCAT Process RAM Write Data FIFO (ECAT_PRAM_WR_DATA)

050h Chip ID and Revision (ID_REV)

054h Interrupt Configuration Register (IRQ_CFG)

058h Interrupt Status Register (INT_STS)

05Ch Interrupt Enable Register (INT_EN)

064h Byte Order Test Register (BYTE_TEST)

074h Hardware Configuration Register (HW_CFG)

084h Power Management Control Register (PMT_CTRL)

08Ch General Purpose Timer Configuration Register (GPT_CFG)

090h General Purpose Timer Count Register (GPT_CNT)

09Ch Free Running 25MHz Counter Register (FREE_RUN)

Reset Register

1F8h Reset Control Register (RESET_CTL)

EtherCAT Registers

300h EtherCAT CSR Interface Data Register (ECAT_CSR_DATA)

304h EtherCAT CSR Interface Command Register (ECAT_CSR_CMD)

308h EtherCAT Process RAM Read Address and Length Register (ECAT_PRAM_RD_ADDR_LEN)

30Ch EtherCAT Process RAM Read Command Register (ECAT_PRAM_RD_CMD)

310h EtherCAT Process RAM Write Address and Length Register (ECAT_PRAM_WR_ADDR_LEN)

314h EtherCAT Process RAM Write Command Register (ECAT_PRAM_WR_CMD)
DS00002655A-page 4  2018 Microchip Technology Inc.

AN2655
2.2.1 PDI INTERRUPT

The programmable system interrupts are generated internally by various device sub-modules and can be configured to
generate a single external host interrupt via the IRQ interrupt output pin. The programmable nature of the host interrupt
provides the user with the ability to optimize performance dependent upon the application requirements. Buffer type,
polarity, and deassertion interval of the IRQ interrupt are modifiable. The IRQ interrupt can be configured as an open-
drain output to facilitate the sharing of interrupts with other devices. All internal interrupts are maskable and capable of
triggering the IRQ interrupt.

If the application running on the SOC requires AL Event Interrupt, then the IRQ line should be connected to the micro-
controller input interrupt. The configuration of IRQ can be done using INTERRUPT CONFIGURATION REGISTER
(IRQ_CFG) - 0x54 and INTERRUPT ENABLE REGISTER (INT_EN) - 0x5C. For more details, refer to the LAN9252
data sheet.

2.2.2 DC - SYNC0 AND SYNC1

If the application running on the SOC requires a Distributed Clock (DC), then SYNC0 and SYNC1 should be connected
to the interrupts lines of the microcontroller. Refer to the LAN9252 data sheet for the configuration of SYNC0 and
SYNC1.

2.2.3 TIMER

SSC has a variable that counts every one millisecond, which can be implemented either using timer interrupt or polling
method. The interrupt or polling mode can be selected in the SSC Tool before generating the SSC.

FIGURE 2-3: FUNCTIONAL INTERRUPT MECHANISM

EtherCAT® Device

DC

SYNC/Latch
PDI Config.

Register

(0x0151)

&

&

Other
Interrupt
sources

AL Event
Request
Register

(0x0220:0x0223)

AL Event
Mask

Register

(0x0204:0x0207)

& ≥ 1

SYNC0

SYNC1

SYNC0

SYNC1

IRQ

IRQ_B

IRQ_C

IRQ_A

8

3

7

2

3

32 32

32

32

PD
I Interface

(SPI, SQ
I, or H

BI)

Controller
 2018 Microchip Technology Inc. DS00002655A-page 5

AN2655
3.0 LAN9252 SDK 1.X

The PDI and hardware-specific files are part of the LAN9252 SDK 1.x. The user application, aoeappl, coeappl, foeappl,
and eoeappl have to be defined as per user applications. The PDI interface in SDK 1.3 is based on PIC32MX795F512L.
Thus, for any other SOCs, these files must be modified.

SDK 1.3 has two root folders:

• Common - The SSC tool generated files can be copied here. The LAN9252_HW has
generic PDI APIs defined as per ET9300. This can be easily ported to any other architec-
ture.

• PIC32 - This folder contains the APIs that are platform-dependent. For controllers other
than PIC32MX795F512L, all the APIs must be ported as per the SOCs used.

PMPDriver has the HBI driver (PIC32MX PMP driver) files, whereas SPIDriver has the APIs
related to PIC32MX SPI related APIs.

PICHW has the platform-dependent APIs that are defined by ET9300.

FIGURE 3-1: SSC OVERVIEW

Note: For more information about the SSC tool, refer to EtherCAT Slave Stack Code (SSC) ET9300 web page
(www.ethercat.org).

State machine (ecatslv.*) Process data (ecatappl.*) Mailbox (mailbox.*)

Em
er

ge
nc

y
(e

m
cy

.*)

Ao
E

(e
ca

ta
oe

.*)

C
oE

 (e
ca

tc
oe

.*)

Fo
E

(e
ca

tfo
e.

*)

Eo
E

(e
ca

te
oe

.*)

So
E

(e
ca

ts
oe

.*)

Vo
E

C
od

e
co

nf
ig

ur
at

io
n

(e
ca

t_
de

f.h
)

ao
ea

pp
l.*

sd
os

er
v.

*
ob

jd
ef

.*
co

ea
pp

l.*

fo
ea

pp
l.*

eo
ea

pp
l.*

Process data interface (PDI) and hardware specific files (XXXXhw.*)

ESC

PD
I

IRQ

DL

AL

User application (el9800appl.*, cia402appl.*, …)
DS00002655A-page 6  2018 Microchip Technology Inc.

AN2655
4.0 LAN9252 HARDWARE ABSTRACTION LAYER

The functions to be defined to integrate with SSC as per ET9300 are:

• UINT8 HW_Init(void);

• void HW_Release(void);

• UINT16 HW_GetALEventRegister(void);

• UINT16 HW_GetALEventRegister_Isr(void);

• void HW_ResetALEventMask(UINT16 intMask);

• void HW_SetALEventMask(UINT16 intMask);

• void HW_EscRead(MEM_ADDR * pData, UINT16 Address, UINT16 Len);

• void HW_EscReadIsr(MEM_ADDR *pData, UINT16 Address, UINT16 Len);

• void HW_EscWrite(MEM_ADDR *pData, UINT16 Address, UINT16 Len);

• void HW_EscWriteIsr(MEM_ADDR *pData, UINT16 Address, UINT16 Len);

• void HW_EscReadMbxMem(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

• void HW_EscWriteMbxMem(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

• void HW_DisableSyncManChannel(UINT8 channel);

• void HW_EnableSyncManChannel(UINT8 channel);

• TSYNCMAN ESCMEM *HW_GetSyncMan(UINT8 channel);

• UINT16 MainInit(void)

• void MainLoop(void)

• Interrupts for IRQ, SYNC0 and SYNC1

• Timer Interrupt
 2018 Microchip Technology Inc. DS00002655A-page 7

AN2655
5.0 LAN9252 SDK APIS

Refer to the ET9300 application note and the SSC tool from ETG for more details about generating the SSC code. SSC
defines predefined macros to create appropriate settings for creating the source code for any companion ESCs and
SOCs. Table 5-1 has some example macros.

The Microchip_LAN9252_SSC_Config.xml has the predefined macros that are required for generating the SSC code
with respect to LAN9252 ESC.

The SSC consists of three parts:

• PDI/HAL

- Generic LAN9252 driver

- Low-level PDI driver (specific to host uController)

• Generic EtherCAT stack

• User application

The behavior of the generic EtherCAT stack is described in ETG.1000 Specification [2]. In general, the hardware access
implementation needs to support the following features:

• ESC read/write access

• Timer supply (at least 1 ms base tick)

TABLE 5-1: EXAMPLES OF SSC PREDEFINED MACROS

Macro Description

CONTROLLER_16BIT This setting is used if the slave code is built for a 16-bit C.

CONTROLLER_32BIT This setting is used if the slave code is built for a 32-bit C.

ESC_16BIT_ACCESS If this setting is set, then only 16-bit aligned accesses will be performed on the ESC.

ESC_32BIT_ACCESS If this setting is set, then only 32-bit aligned accesses will be performed on the ESC.

MBX_16BIT_ACCESS If this setting is set, then the slave code will only access mailbox data 16-bit aligned.
If the mailbox data is copied to the local μC memory and CONTROLLER_16BIT is
set, then this definition should also be set.

FIGURE 5-1: SSC FUNCTIONAL HIERARCHY

Application
(for example, CiA402 Drive Profile)

EtherCAT®
State Machine

Ao
E

Fo
E

Eo
E

So
E

Vo
E

C
oE

Mailbox

Process data

PDI and hardware abstraction

Application function set

Hardware function set

ESC address space (DPRAM)

Mailbox Process data

Register
0x10000x0000

User
Application

Generic
EtherCAT® stack

Hardware
access

EtherCAT® Slave
Controller (extract)
DS00002655A-page 8  2018 Microchip Technology Inc.

AN2655
• Calling of timer handler every 1 ms (only required if timer interrupt handling is supported; ECAT_TIMER_INT is set
to 1)

• Calling of interrupt specific functions (only required if synchronization is supported)

- PDI ISR (required if AL_EVENT_SUPPORTED is set to 1)

- SYNC0 ISR (required if DC_SUPPORTED is set to 1)

The functions and macros that should be provided by the HAL to access LAN9252 and the function that should be pro-
vided by the application layer are defined in the following sections.

5.1 LAN9252 Driver

As per the ET9300 application note (EtherCAT Slave Stack Code), the hardware access APIs need to access Generic
EtherCAT stack as follows.

5.1.1 HW_INIT

This function should call from the slave project for initialization of ESC. This function is replaced by UINT16
LAN9252_Init(void).

5.1.2 LAN9252_INIT

This function should call from the slave project for initialization of ESC. Before calling this function, the PDI interface of
the slave microcontroller should be initialized.

For initialization of LAN9252, read BYTE-ORDER register (0x64) until it reads 0x87654321. Enable AL Event masking
of the AL Event Request register events for mapping to PDI IRQ signal (set 0x93).

This function initializes the LAN9252 PDI interface, configures the LAN9252 IRQ polarity, and provides a function to
enable various interrupts, IRQ, SYNC, and Timer.

• PDI_Init_SYNC_Interrupts() - Configure and enable SYNC interrupt

• PDI_Timer_Interrupt() - Configure and enable Timer interrupt

• PDI_IRQ_Interrupt() - Configure and enable IRQ interrupt

• PDI_Enable_Global_interrupt() - Global interrupt

These functions depend on the slave microcontroller.

Refer to the “Interrupt Registers” section of the LAN9252 data sheet.

5.1.3 HW_RELEASE

This function is implemented if hardware resources must be released when the sample application stops.

Prototype UINT16 HW_Init(void)

Parameter void

Return 0 if initialization was successful

> 0 if error has occurred while initialization

Description Initializes the host controller (PDI) and allocates resources that are required for hardware
access.

Prototype UINT16 LAN9252_Init(void)

Parameter void

Return 0 if initialization was successful

> 0 if error has occurred while initialization

Description Initializes the host controller (PDI) and allocates resources that are required for hardware
access.

Prototype void HW_Release(void)

Parameter void

Return void

Description Release allocated resources
 2018 Microchip Technology Inc. DS00002655A-page 9

AN2655
5.1.4 GETALEVENTREGISTER

Note: Interrupt should be disabled while reading AL Event register (0x220-0x221).

5.1.5 HW_GETALEVENTREGISTER_ISR

5.1.6 HW_RESETALEVENTMASK

5.1.7 HW_SETALEVENTMASK

Note: This function is only required for SSC version 5.10 or previous versions.

5.1.8 HW_SETLED

Note: LAN9252 does not support error LED; thus, this feature should be enabled by PDI SOC if needed. The argu-
ment RunLed will be neglected (LAN9252 has an in-built support for Run LED).

5.1.9 HW_RESTARTTARGET

Prototype UINT16 HW_GetALEventRegister(void)

Parameter void

Return Content of register 0x220-0x221

Description Get the first two bytes of the AL Event register (0x220-0x221).

Prototype UINT16 HW_GetALEventRegister_Isr(void)

Parameter void

Return Content of register 0x220-0x221

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise, this function is defined as
HW_GetALEventRegister. Get the first two bytes of the AL Event register (0x220-0x221).

Prototype void HW_ResetALEventMask(UINT16 intMask)

Parameter “intMask” Interrupt mask (disabled interrupt is zero)

Return void

Description Performs a logical AND with the AL Event Mask register (0x0204 : 0x0205).

Prototype void HW_SetALEventMask(UINT16 intMask)

Parameter “intMask” Interrupt mask (enabled interrupt is one)

Return void

Description Performs a logical OR with the AL Event Mask register (0x0204 : 0x0205).
This function is only required if AL_EVENT_ENABLED is set.

Prototype void HW_SetLed(UINT8 RunLed,UINT8 ErrLed)

Parameter “RunLed” EtherCAT Run LED state

“ErrLed” EtherCAT Error LED state

Return void

Description Updates the EtherCAT Run and Error LEDs (or EtherCAT Status LED).

Prototype void HW_RestartTarget(void)

Parameter void

Return void

Description Resets the hardware. This function is only required if BOOTSTRAPMODE_SUPPORTED
is set.
DS00002655A-page 10  2018 Microchip Technology Inc.

AN2655
5.1.10 HW_DISABLESYNCMANCHANNEL

Find the sync manager offset register for the corresponding “channel” and disable it.

Note: This function is not supported. This function is only required for SSC version 5.10 or previous versions.

5.1.11 HW_ENABLESYNCMANCHANNEL

Find the sync manager offset register for the corresponding “channel” and disable it.

Note: This function is not supported. This function is only required for SSC version 5.10 or previous versions.

5.1.12 HW_GETSYNCMAN

Note: This function is not supported. This function is only required for SSC version 5.10 or previous versions.

5.1.13 HW_GETTIMER

This function provides the “PDI_GetTimer()” function to get the current hardware timer value. ECAT_TIMER_INC_P_MS
must be defined as per slave microcontroller implementation. SSC calculates different timeouts as per the hardware
time ticks and ECAT_TIMER_INC_P_MS.

Note: This function is required if no timer interrupt is supported (ECAT_TIMER_INT = 0) and to calculate the bus
cycle time.

5.1.14 HW_CLEARTIMER

This function provides the “PDI_ClearTimer” function to clear the hardware timer value.

5.1.15 HW_EEPROMRELOAD

This is only required if EEPROM Emulation is supported. LAN9252 does not support EEPROM Emulation.

Prototype void HW_DisableSyncManChannel(UINT8 channel)

Parameter “channel” SyncManager channel

Return void

Description Disables selected SyncManager channel. Sets bit 0 of the corresponding register.

Prototype void HW_EnableSyncManChannel (UINT8 channel)

Parameter “channel” SyncManager channel

Return void

Description Enables selected SyncManager channel. Resets bit 0 of the corresponding 0x807 regis-
ter.

Prototype TSYNCMAN * HW_GetSyncMan(UINT8 channel)

Parameter “channel” SyncManager channel

Return Pointer to the SyncManager channel description. The SyncManager description structure
size is always 8 byte; the content of TSYNCMAN differs depending on the supported ESC
access.

Description Gets the content of the SyncManager register from the stated channel. Reads 8 bytes
starting at 0x800 + 8*channel.

Prototype UINT32 HW_GetTimer(void)

Parameter void

Return Current timer value

Description Reads the current register value of the hardware timer. If no hardware timer is available,
the function returns the counter value of a multimedia timer. The timer ticks value (incre-
ments/ms) is defined in ECAT_TIMER_INC_P_MS.

Prototype void HW_ClearTimer(void)

Parameter void

Return void

Description Clears the hardware timer value.
 2018 Microchip Technology Inc. DS00002655A-page 11

AN2655
5.1.16 READ/WRITE ACCESS

The EtherCAT CSRs provide register level access to the various parameters of the EtherCAT core. LAN9252-related
registers can be classified into two categories based on their method of access: direct and indirect.

The directly accessible registers (EtherCAT CSR and Process Data RAM Access Registers) are part of the main system
CSRs (LAN9252). These registers provide data or command registers for access to the indirect EtherCAT core regis-
ters. Refer to the “EtherCAT CSR and Process Data RAM Access Registers (Directly Addressable)” section of the
LAN9252 data sheet for more details.

The indirectly accessible EtherCAT core registers reside within the EtherCAT core and must be accessed indirectly via
the EtherCAT CSR Interface Data Register (ECAT_CSR_DATA) and EtherCAT CSR Interface Command Register
(ECAT_CSR_CMD). The indirectly accessible EtherCAT core CSRs provide full access to the many configurable
parameters of the EtherCAT core. The indirectly accessible EtherCAT core CSRs are accessed at address 0h through
0FFFh and are detailed in the “EtherCAT Core CSR Registers (Indirectly Addressable)” section of the LAN9252 data
sheet.

The EtherCAT Core Process Data RAM can be accessed indirectly via ECAT_CSR_DATA and ECAT_CSR_CMD, start-
ing at 1000h.

The EtherCAT Core Process Data RAM can also be accessed more efficiently using the EtherCAT Process RAM Read
Data FIFO (ECAT_PRAM_RD_DATA) and EtherCAT Process RAM Write Data FIFO (ECAT_PRAM_WR_DATA). This
method provides for multiple DWORDS to be transferred via a FIFO mechanism using a single command and fewer
status reads.

For more details, refer to the “ETHERCAT PROCESS RAM READS” and “ETHERCAT PROCESS RAM WRITES” sec-
tions of the LAN9252 data sheet.

5.1.16.1 HW_EscRead

This API provides the PDIReadReg() function to access the ESC core register and Process RAM. The implementation
of this API depends on the PDI interface and slave microcontroller method to access LAN9252 registers (for example,
DMA or accessing the data buffers).

Note: To protect the CSR command and data register (a read or write event from interrupt routine overwrites the
CSR command and data register), the interrupt has to be disabled before accessing any ESC memory.

Prototype void HW_EscRead(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

Parameter “pData” Pointer to local destination buffer. The type of pointer
depends on the host controller architecture (specified
in ecat_def.h or the SSC Tool).

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
addresses are used depending on 8-/16-bit or 32-bit
ESC access (specified in ecat_def.h or the SSC
Tool).

“Len” Access size in bytes

Return void

Description Reads from the EtherCAT Slave Controller. This function is used to access ESC registers
and the DPRAM area.
DS00002655A-page 12  2018 Microchip Technology Inc.

AN2655
5.1.16.2 HW_EscReadIsr

5.1.16.3 HW_EscReadDWord

5.1.16.4 HW_EscReadDWordIsr

5.1.16.5 HW_EscReadWordIsr

Note: Only required if ESC_32_BIT_ACCESS is not set.

Prototype void HW_EscReadIsr(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

Parameter “pData” Pointer to local destination buffer. The type of pointer
depends on the host controller architecture (specified
in ecat_def.h or the SSC Tool).

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
addresses are used depending on 8-/16-bit or 32-bit
ESC access (specified in ecat_def.h or the SSC
Tool).

“Len” Access size in bytes

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscRead. Reads
from the EtherCAT Slave Controller. This function is used to access ESC registers and
the DPRAM area.

Prototype void HW_EscReadDWord(UINT32 DWordValue, UINT16 Address)

Parameter “DWordValue” Local 32-bit variable where the register value will be
stored.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
32-bit addresses are used.

Return void

Description Reads two words from the specified address of the EtherCAT Slave Controller.

Prototype void HW_EscReadDWordIsr(UINT32 DWordValue, UINT16 Address)

Parameter “DWordValue” Local 32-bit variable where the register value will be
stored.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
32-bit addresses are used.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscReadWord.
Reads two words from the specified address of the EtherCAT Slave Controller.

Prototype void HW_EscReadWordIsr(UINT16 WordValue, UINT16 Address)

Parameter “WordValue” Local 16-bit variable where the register value will be
stored.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
16-bit addresses are used.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscReadWord.
Reads one word from the specified address of the EtherCAT Slave Controller.
 2018 Microchip Technology Inc. DS00002655A-page 13

AN2655
5.1.16.6 HW_EscReadByte

Note: Only required if ESC_16BIT_ACCESS and ESC_32BIT_ACCESS are not set.

5.1.16.7 HW_EscReadByteIsr

Note: Only required if ESC_16BIT_ACCESS and ESC_32BIT_ACCESS are not set.

5.1.16.8 HW_EscReadMbxMem

Prototype void HW_EscReadByte(UINT8 ByteValue, UINT16 Address)

Parameter “ByteValue” Local 8-bit variable where the register value will be
stored.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes.

Return void

Description Reads one byte from the EtherCAT Slave Controller.

Prototype void EscReadByteIsr (UINT8 ByteValue, UINT16 Address)

Parameter “ByteValue” Local 8-bit variable where the register value will be
stored.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscReadByte.
Reads one byte from the EtherCAT Slave Controller.

Prototype void HW_EscReadMbxMem(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

Parameter “pData” Pointer to local destination mailbox buffer. The type
of pointer depends on the host controller architecture
(specified in ecat_def.h or the SSC Tool).

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
addresses are used depending on 8-/16-bit or 32-bit
ESC access (specified in ecat_def.h or the SSC
Tool).

“Len” Access size in bytes

Return void

Description Reads data from the ESC and copies to the slave mailbox memory. If the local mailbox
memory is also located in the application memory, this function is equal to HW_EscRead.
DS00002655A-page 14  2018 Microchip Technology Inc.

AN2655
5.1.16.9 HW_EscWrite

This API provides the PDIWriteReg() function to access ESC core register and Process RAM. The implementation of
this API depends on the PDI interface and the slave microcontroller method to access LAN9252 registers (for example,
DMA or direct access of the data buffers).

Note: To protect the CSR command and data register (a read or write event from interrupt routine overwrites the
CSR command and data register), the interrupt must be disabled before accessing any ESC memory.

5.1.16.10 HW_EscWriteIsr

5.1.16.11 HW_EscWriteDWord

Prototype void HW_EscWrite(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

Parameter “pData” Pointer to local source buffer. The type of pointer
depends on the host controller architecture (specified
in ecat_def.h or the SSC Tool).

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
addresses are used depending on 8-/16-bit or 32-bit
ESC access (specified in ecat_def.h or the SSC
Tool).

“Len” Access size in bytes

Return void

Description Writes from the EtherCAT Slave Controller. This function is used to access ESC registers
and the DPRAM area.

Prototype void HW_EscWriteIsr (MEM_ADDR *pData, UINT16 Address, UINT16 Len)

Parameter “pData” Pointer to local source buffer. The type of pointer
depends on the host controller architecture (specified
in ecat_def.h or the SSC Tool).

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
addresses are used depending on 8-/16-bit or 32-bit
ESC access (specified in ecat_def.h or the SSC
Tool).

“Len” Access size in bytes

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscWrite. Writes
from the EtherCAT Slave Controller. This function is used to access ESC registers and
the DPRAM area.

Prototype void HW_EscWriteDWord(UINT32 DWordValue, UINT16 Address)

Parameter “DWordValue” Local 32-bit variable that contains the data to be writ-
ten to the ESC memory area.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
32-bit addresses are used.

Return void

Description Writes one word to the EtherCAT Slave Controller.
 2018 Microchip Technology Inc. DS00002655A-page 15

AN2655
5.1.16.12 HW_EscWriteDWordIsr

5.1.16.13 HW_EscWriteWordIsr

Note: Only required if ESC_32BIT_ACCESS is not set.

5.1.16.14 HW_EscWriteWord

Note: Only required if ESC_32BIT_ACCESS is not set.

5.1.16.15 HW_EscWriteByte

Prototype void HW_EscWriteDWordIsr (UINT32 DWordValue, UINT16 Address)

Parameter “DWordValue” Local 32-bit variable that contains the data to be writ-
ten to the ESC memory area.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
32-bit addresses are used.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscWriteWord.
Writes two words to the EtherCAT Slave Controller.

Prototype void HW_EscWriteWordIsr(UINT16 WordValue, UINT16 Address)

Parameter “WordValue” Local 16-bit variable that contains the data to be writ-
ten to the ESC memory area.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
16-bit addresses are used.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscWriteWord.
Writes one word to the EtherCAT Slave Controller.

Prototype void HW_EscWriteWordIsr(UINT16 WordValue, UINT16 Address)

Parameter “WordValue” Local 16-bit variable that contains the data to be writ-
ten to the ESC memory area.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
16-bit addresses are used.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscWriteWord.
Writes one word to the EtherCAT Slave Controller.

Prototype void HW_EscWriteByte (UINT8 ByteValue, UINT16 Address)

Parameter “ByteValue” Local 8-bit variable that contains the data to be writ-
ten to the ESC memory area.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes.

Return void

Description Writes one byte to the EtherCAT Slave Controller.
DS00002655A-page 16  2018 Microchip Technology Inc.

AN2655
5.1.16.16 HW_EscWriteByteIsr

This is only defined if ESC_16BIT_ACCESS and ESC_32BIT_ACCESS are disabled.

5.1.16.17 HW_EscWriteMbxMem

Prototype void HW_ EscWriteByteIsr (UINT8 ByteValue, UINT16 Address)

Parameter “ByteValue” Local 8-bit variable that contains the data to be writ-
ten to the ESC memory area.

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes.

Return void

Description This function should be implemented if a special function for ESC access from interrupt
service routines is required; otherwise this function is defined as HW_EscWriteByte.
Writes one byte to the EtherCAT Slave Controller.

Prototype void HW_EscWriteMbxMem(MEM_ADDR *pData, UINT16 Address, UINT16 Len)

Parameter “pData” Pointer to local source mailbox buffer. The type of
pointer depends on the host controller architecture
(specified in ecat_def.h or the SSC Tool).

“Address” EtherCAT Slave Controller address. Specifies the off-
set within the ESC memory area in bytes. Only valid
addresses are used depending on 8-/16-bit or 32-bit
ESC access (specified in ecat_def.h or the SSC
Tool).

“Len” Access size in bytes

Return Void

Description Writes data from the slave mailbox memory to the ESC memory. If the local mailbox mem-
ory is also located in the application memory, this function is equal to HW_EscWrite.
 2018 Microchip Technology Inc. DS00002655A-page 17

AN2655
5.1.17 APPLICATION

All APIs under this section are related to the end application.

5.1.17.1 APPL_Application

5.1.17.2 APPL_GetDeviceID

5.1.17.3 pAPPL_EEPROM_Read

Prototype: UINT16 (* pAPPL_EEPROM_Read)(UINT32 wordaddr)

Note: LAN9252 does not support EEPROM Emulation.

5.1.17.4 pAPPL_EEPROM_Write

Prototype: UINT16 (* pAPPL_EEPROM_Write)(UINT32 wordaddr)

Note: LAN9252 does not support EEPROM Emulation.

5.1.17.5 pAPPL_EEPROM_Reload

Prototype: UINT16 (* pAPPL_EEPROM_Reload)(void)

Note: LAN9252 does not support EEPROM Emulation.

5.1.17.6 APPL_StartMailboxHandler

5.1.17.7 APPL_StopMailboxHandler

5.1.17.8 APPL_StartInputHandler

Prototype void APPL_Application(void)

Parameter Void

Return void

Description This function is called by the synchronization ISR or from the main-loop if synchronization
is not activated.

Prototype UINT16 APPL_GetDeviceID (void)

Parameter Void

Return Explicit Device ID that is written to the AL Status Code register.

Description This function is called if the master requests the Explicit Device ID. Only required if the
slave supports Explicit Device ID handling (EXPLICIT_DEVICE_ID).

Prototype UINT16 APPL_StartMailboxHandler(void)

Parameter Void

Return See the generic ESM return code description.

Description This function is called during the state transition from INIT to PREOP or INIT to BOOT.

Prototype UINT16 APPL_StopMailboxHandler(void)

Parameter Void

Return See the generic ESM return code description.

Description This function is called during the state transition from PREOP to INIT or BOOT to INIT.

Prototype UINT16 APPL_StartInputHandler (UINT16 *pIntMask)

Parameter pIntMask Value for register 0x204 (AL Event Mask)

Return See the generic ESM return code description.

Description This function is called during the state transition from PREOP to SAFEOP (even if no
input process data is available).
DS00002655A-page 18  2018 Microchip Technology Inc.

AN2655
5.1.17.9 APPL_StopInputHandler

5.1.17.10 APPL_StartOutputHandler

5.1.17.11 APPL_StopOutputHandler

5.1.17.12 APPL_GenerateMapping

5.1.17.13 APPL_AckErrorInd

5.1.17.14 APPL_InputMapping

Note: The pData contains the input buffer from the Master.

Prototype UINT16 APPL_StopInputHandler (void)

Parameter Void

Return See the generic ESM return code description.

Description This function is called during the state transition from SAFEOP to PREOP (even if no
input process data is available).

Prototype UINT16 APPL_StartOutputHandler (void)

Parameter Void

Return See the generic ESM return code description.

Description This function is called during the state transition from SAFEOP to OP (even if no output
process data is available).

Prototype UINT16 APPL_StopOutputHandler (void)

Parameter Void

Return See the generic ESM return code description.

Description This function is called during the state transition from OP to SAFEOP (even if no output
process data is available).

Prototype UINT16 APPL_GenerateMapping (UINT16 *pInputSize, UINT16 *pOutputSize)

Parameter Pointer to two 16-bit variables to store the process data size.
pInputSize: Input process data (Slave -> Master)
pOutputSize: Output process data (Master - > Slave).

Return See the generic ESM return code description.

Description This function is called when the EtherCAT master requests the transition from PREOP to
SAFEOP. This function calculates the process data size in bytes. The values are required
to check the SyncManager settings and for the generic process data handling.

Prototype Void APPL_AckErrorInd(UINT16 stateTrans)

Parameter stateTrans: Indicates the current state transition

Return Void

Description This function is called when the master acknowledges an error.

Prototype void APPL_InputMapping(UINT16 *pData)

Parameter pData Pointer to the input process data

Return Void

Description This function is called after the application call to map the input process data to the
generic stack. The generic stack copies the data to the SM buffer.
 2018 Microchip Technology Inc. DS00002655A-page 19

AN2655
5.1.17.15 APPL_OutputMapping

Note: The pData contains the output buffer to the Master.

5.1.18 VARIABLES

5.1.18.1 ApplicationObjDic

5.1.18.2 pEEPROM

Note: LAN9252 does not support EEPROM emulation.

5.2 PDI Driver

Different types of Process Data Interface (PDI) are available in LAN9252. See Figure 2-2.

Host bus interface with two user-selectable options are available:

• Indexed register access

• Multiplexed address/data bus

The HBI supports 8-/16-bit operation with big, little, and mixed-endian operations. Two process data RAM FIFOs inter-
face the HBI to the EtherCAT slave controller and facilitate the transferring of process data information between the host
CPU and the EtherCAT slave.

An SPI/Quad SPI slave controller provides a low pin count synchronous slave interface that facilitates communication
between the device and a host system. The SPI/Quad SPI slave allows access to the system CSRs, internal FIFOs,
and memories. It supports single and multiple registers read and write commands with incrementing, decrementing, and
static addressing. Single, Dual and Quad bit lanes are supported with a clock rate of up to 80 MHz.

5.2.1 GENERAL PDI API

All the APIs in this section are designed to work with 32-bit processors or controllers.

5.2.1.1 PDI_Init

Note: This API should be called before accessing the PDI interface. The implementation of this API depends on
the slave microcontroller.

Prototype void APPL_OutputMapping(UINT16 *pData)

Parameter pData Pointer to the output process data

Return Void

Description This function is called before the application call to get the output process data.

Name ApplicationObjDic

Type Array of structure TOBJECT

Description Only required if the slave supports CAN over EtherCAT (CoE). The variable is defined in
the application header file. This array contains the application-specific objects. The last
element of this array has the 0xFFFF index.

Name pEEPROM

Type UINT8 *

Description Pointer to the EEPROM buffer. Only required if EEPROM emulation is enabled (ESC_EE-
PROM_EMULATION = 1). This is defined in ecatappl.h and is set by the application
during power-up (before MainInit() is called). The size of the EEPROM buffer is defined by
the ESC_EEPROM_SIZE (default 2048) setting.

Prototype void PDI_Init();

Parameter void

Return void

Description Initializes PDI interface
DS00002655A-page 20  2018 Microchip Technology Inc.

AN2655
5.2.2 READ/WRITE API

The EtherCAT CSRs provide register level access to the various parameters of the EtherCAT core. EtherCAT-related
registers can be classified into two main categories based on their method of access: direct and indirect.

The LAN9252SDK 1.x is compatible with PIC32MX795F512L.

5.2.2.1 Read/Write Directly Addressable Registers

5.2.2.1.1 PDIWriteLAN9252DirectReg

Note: Either the HBI or SPI/SQI interface can be used to access LAN9252 registers.

5.2.2.1.2 PDIReadLAN9252DirectReg

Note: Either the HBI or SPI/SQI interface can be used to access LAN9252 registers.

5.2.2.2 Read/Write Indirectly Addressable Registers (EtherCAT® Core Registers)

5.2.2.2.1 PDIReadReg

Note: Either the HBI or SPI/SQI interface can be used to access LAN9252 registers.

5.2.2.2.2 PDIWriteReg

Note: Either the HBI or SPI/SQI interface can be used to access LAN9252 registers.

Prototype void PDIWriteLAN9252DirectReg(UINT32 Val, UINT16 Address)

Parameter Val DWORD value

Address Address of the directly addressable register

Return void

Description Writes “val” to the directly addressable register.

Prototype UINT32 PDIReadLAN9252DirectReg(UINT16 Address)

Parameter Address Address of the directly addressable register

Return UINT32 The read DWORD value

Description Reads the directly addressable register.

Prototype void PDIReadReg(UINT8 *ReadBuffer, UINT16 Address, UINT16 Count)

Parameter ReadBuffer Pointer to the read buffer

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description This function reads the ESC registers using LAN9252 CSR or FIFO.

Prototype void PDIWriteReg(UINT8 *WriteBuffer, UINT16 Address, UINT16 Count)

Parameter WriteBuffer Pointer to the buffer to be written

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Writes the ESC registers using LAN9252 CSR or FIFO.
 2018 Microchip Technology Inc. DS00002655A-page 21

AN2655
5.2.2.2.3 Host Bus Interface

The following APIs use PMPReadDWord and PMPWriteDWord to read and write LAN9252 registers. This API must be
defined as per the host bus interface used in the SSC controller.

Refer to the “HBI Bus Interface” section of the LAN9252 data sheet.

• PMPReadRegUsingCSR

Note: For more details, refer to the “EtherCAT Process RAM Reads” section of the LAN9252 data sheet.

• PMPReadPDRamRegister

Note: Refer to the “EtherCAT CSR and Process Data RAM Access Registers (Directly Addressable)” section of
the LAN9252 data sheet.

• PMPWriteRegUsingCSR

Note: For more details, refer to the “EtherCAT Process RAM Writes” section of the LAN9252 data sheet.

• PMPWritePDRamRegister

Note: Refer to the “EtherCAT CSR and Process Data RAM Access Registers (Directly Addressable)” section of
the LAN9252 data sheet.

Prototype void PMPReadRegUsingCSR(UINT8 *ReadBuffer, UINT16 Address, UINT8 Count)

Parameter ReadBuffer Pointer to the read buffer

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Reads the EtherCAT core registers using LAN9252 CSR registers.

Prototype void PMPReadPDRamRegister(UINT8 *ReadBuffer, UINT16 Address, UINT16 Count)

Parameter ReadBuffer Pointer to the read buffer

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Reads the PDRAM using LAN9252 FIFO.

Prototype void PMPWriteRegUsingCSR(UINT8 *WriteBuffer, UINT16 Address, UINT8 Count)

Parameter WriteBuffer Pointer to the buffer to be written

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Writes the ESC registers using LAN9252 CSR.

Prototype void PMPWritePDRamRegister(UINT8 *WriteBuffer, UINT16 Address, UINT16 Count)

Parameter WriteBuffer Pointer to the buffer to be written

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Writes the ESC registers using LAN9252 FIFO.
DS00002655A-page 22  2018 Microchip Technology Inc.

AN2655
5.2.2.2.4 SPI

• SPIReadRegUsingCSR

Note: For more details, refer to the “EtherCAT Process RAM Reads” section of the LAN9252 data sheet.

• SPIReadPDRamRegister

Note: Refer to the “EtherCAT CSR and Process Data RAM Access Registers (Directly Addressable)” section of
the LAN9252 data sheet.

• SPIWriteRegUsingCSR

Note: For more details, refer to the “EtherCAT Process RAM Writes” section of the LAN9252 data sheet.

• SPIWritePDRamRegister

Note: Refer to the “EtherCAT CSR and Process Data RAM Access Registers (Directly Addressable)” of the
LAN9252 data sheet.

• SPIReadDWord

Note: For more details, refer to the “SPI/SQI Slave” section of the LAN9252 data sheet.

Prototype void SPIReadRegUsingCSR (UINT8 *ReadBuffer, UINT16 Address, UINT8 Count)

Parameter ReadBuffer Pointer to the read buffer

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Reads the EtherCAT core registers using LAN9252 CSR registers.

Prototype void SPIReadPDRamRegister (UINT8 *ReadBuffer, UINT16 Address, UINT16 Count)

Parameter ReadBuffer Pointer to the read buffer

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Reads the PDRAM using LAN9252 FIFO.

Prototype void SPIWriteRegUsingCSR (UINT8 *WriteBuffer, UINT16 Address, UINT8 Count)

Parameter WriteBuffer Pointer to the buffer to be written

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Writes the ESC registers using LAN9252 CSR.

Prototype void PMPWritePDRamRegister(UINT8 *WriteBuffer, UINT16 Address, UINT16 Count)

Parameter WriteBuffer Pointer to the buffer to be written

Address Address of the directly addressable register

Count Number of bytes to read

Return void

Description Writes the ESC registers using LAN9252 FIFO.

Prototype UINT32 SPIReadDWord (UINT16 Address)

Parameter Address Address of LAN9252 CSR register

Return The read value (DWORD)

Description This function reads 4 bytes of data from LAN9252 CSR register.
 2018 Microchip Technology Inc. DS00002655A-page 23

AN2655
• SPIWriteDWord

Note: For more details, refer to the “SPI/SQI Slave” section of the LAN9252 data sheet.

• SPIReadBurstMode

Note: This function does not assert CS. For more details, refer to the “SPI/SQI Slave” section of the LAN9252 data
sheet.

• SPIWriteBurstMode

Note: This function does not assert CS. For more details, refer to the “SPI/SQI Slave” section of the LAN9252 data
sheet.

• SPIWriteBytes

Note: For more details, refer to the “SPI/SQI Slave” section of the LAN9252 data sheet.

Prototype void SPIWriteDWord (UINT16 Address, UINT32 Val)

Parameter Address Address of LAN9252 CSR register (not ESC register)

Val 4-byte value

Return void

Description This function writes 4 bytes of data to the corresponding address of the LAN9252 CSR
register (not ESC register).

Prototype UINT32 SPIReadBurstMode (UINT16 Address)

Parameter void

Return The read value(DWORD)

Description This function reads 4 bytes of data from LAN9252 CSR register.

Prototype UINT32 SPIWriteBurstMode (UINT16 Address)

Parameter Address Address of LAN9252 CSR register

Return The read value (DWORD)

Description This function writes 4 bytes of data to the corresponding address of LAN9252 CSR regis-
ter.

Prototype void SPIWriteBytes(UINT16 Address, UINT8 *Val, UINT8 nLength)

Parameter Address Address of CSR register

Val Pointer to the write buffer

nLength Length of the buffer

Return void

Description This function writes the LAN9252 CSR registers.
DS00002655A-page 24  2018 Microchip Technology Inc.

AN2655
5.3 Slave Controller Dependent APIs

The definition of the following APIs depends on the SSC controller used.

5.3.1 INTERRUPT API

5.3.1.1 PDI_Timer_Interrupt

5.3.1.2 PDI_IRQ_Interrupt

5.3.1.3 PDI_Enable_Global_interrupt

5.3.1.4 PDI_Disable_Global_Interrupt

Note: PDI_Restore_Global_Interrupt uses the previous state of the interrupt status to restore the interrupt status.

5.3.1.5 PDI_Init_SYNC_Interrupts

5.3.2 INTERRUPT HANDLERS

The following functions are provided by the generic SSC (defined in ecatappl.h) and must be called from the hardware
access layer.

5.3.2.1 ECAT_CheckTimer

Note: The timer ISR must be implemented as per the slave controller.

Prototype void PDI_Timer_Interrupt()

Parameter void

Return void

Description This function configures and enables the TIMER interrupt for 1 ms.

Prototype void PDI_IRQ_Interrupt()

Parameter void

Return void

Description This function configures and enables the interrupt for IRQ.

Prototype void PDI_Enable_Global_interrupt()

Parameter void

Return void

Description Enables interrupts in the slave controller.

Prototype UINT32 PDI_Disable_Global_Interrupt()

Parameter void

Return The previous state of the interrupt Status

Description This function reads the current interrupt status and disables all interrupt requests.

Prototype void PDI_Init_SYNC_Interrupts()

Parameter void

Return void

Description The function configures and enable SYNC0 and SYNC1 interrupts.

Prototype void ECAT_CheckTimer (void)

Parameter void

Return void

Description This function must be called every 1 ms from a timer ISR (ECAT_TIMER_INT = 1). If no
timer interrupt is supported, this function is called automatically when 1 ms is elapsed
(based on the provided timer).
 2018 Microchip Technology Inc. DS00002655A-page 25

AN2655
5.3.2.2 PDI_Isr

Note: IRQ ISR must be implemented as per the slave controller.

5.3.2.3 Sync0_Isr

Note: SYNC0 ISR must be implemented as per the slave controller.

5.3.2.4 Sync1_Isr

Note: SYNC1 ISR must be implemented as per the slave controller.

5.3.3 HOST BUS INTERFACE

Host Bus Interface (HBI) can be in the Indexed or Multiplexed mode.

In Multiplexed Address or Data mode, the address and the endianness select inputs are shared with the data bus. Two
methods are supported: a single-phase address that utilizes up to 16 address or data pins and a dual-phase address
that utilizes only the lower 8 data bits.

In Indexed Address mode, access to the internal registers and memory of the device are indirectly mapped using Index
and Data registers. The desired internal address is written into the device at a specific offset. The value written is then
used as the internal address when the associate Data register address is accessed. Three Index or Data register sets
are provided allowing for multi-threaded operation without the concern of one thread corrupting the Index set by another
thread.

For more details, refer to the “HBI Bus Interface” section of the LAN9252 data sheet.

5.3.3.1 PMPReadDWord

Note: This API must be implemented as per the slave controller if PDI interface is a host bus interface. This func-
tion will call after initialization of the HBI of the slave controller.

Prototype void PDI_Isr (void)

Parameter void

Return void

Description This function must be called from the PDI ISR. For the PDI-specific pin naming and the
interrupt generation logic, please refer to the LAN9252 data sheet. To support PDI inter-
rupt handling, it is also required to set AL_EVENT_ENABLED to 1.

Prototype void Sync0_Isr (void)

Parameter void

Return void

Description This function must be called from the Sync0 ISR. The Sync0 interrupt is generated by the
DC Unit of the ESC. It is currently not supported by default to map the Sync0 signal to the
PDI interrupt. To support DC synchronization, DC_SUPPORTED must be set.

Prototype void Sync1_Isr (void)

Parameter void

Return void

Description This function must be called from the Sync1 ISR. The Sync1 interrupt is generated by the
DC Unit of the ESC. It is currently not supported by default to map the Sync1 signal to the
PDI interrupt. To support DC synchronization, DC_SUPPORTED must be set.

Prototype UINT32 PMPReadDWord (UINT16 Address)

Parameter Address Address of LAN9252 CSR register

Return The read value (DWORD)

Description This function reads 4 bytes of data from LAN9252 CSR register.
DS00002655A-page 26  2018 Microchip Technology Inc.

AN2655
5.3.3.2 PMPWriteDWord

Note: This API must be implemented as per the slave controller if PDI interface is a host bus interface. This func-
tion will call after initialization of the HBI of the slave controller.

5.3.4 SPI

The SPI/SQI Slave module provides a low pin count synchronous slave interface that facilitates communication between
the device and a host system. The SPI/SQI Slave allows access to the System CSRs and internal FIFOs and memories.
It supports single and multiple registers read and write commands with incrementing, decrementing, and static address-
ing.

For more details, refer to the “SPI/SQI SLAVE” section of the LAN9252 data sheet.

5.3.4.1 SPIReadByte

5.3.4.2 SPIWriteByte

5.3.4.3 Macros

The following macros are related to the SOCs where SSC runs.

• CSLOW () – This macro drives the CS line low.

• CSHIGH () – This macro drives the CS line high.

• DISABLE_ESC_INT – Disables the IRQ interrupt

• ENABLE_ESC_INT – Enables the IRQ interrupt

• ECAT_TIMER_INC_P_MS – The timer ticks value (increments/ms)

Prototype void PMPWriteDWord (UINT16 Address, UINT32 Val)

Parameter Address Address of LAN9252 CSR register (not ESC register)

Val 4-byte value

Return void

Description This function writes 4 bytes of data to the corresponding address of LAN9252 CSR regis-
ter (not ESC register).

Prototype void SPIReadByte ()

Parameter void

Return void

Description This function reads 1 byte of data from the LAN9252 CSR register. Refer to the LAN9252
data sheet on how to read using SPI.

Prototype void SPIWriteByte(UINT8 data)

Parameter data Data to write

Return void

Description This function writes 1 byte of data to the corresponding address of LAN9252 CSR regis-
ter.
 2018 Microchip Technology Inc. DS00002655A-page 27

AN2655
6.0 SSC TOOL CONFIGURATION FILE

The Microchip_LAN9252_SSC_Config.xml has the predefined macros that are required for generating the SSC code
about LAN9252 ESC. The default values available in this config file can be updated using the SSC tool or modifying the
same file itself.

Note: For more information about the SSC tool, refer to EtherCAT Slave Stack Code (SSC) ET9300 web page
(www.ethercat.org).
DS00002655A-page 28  2018 Microchip Technology Inc.

 2018 Microchip Technology Inc. DS00002655A-page 29

AN2655

APPENDIX A: REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Section/Figure/Entry Correction

DS00002655A
(02-23-18)

Initial release

AN2655

DS00002655A-page 30  2018 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site
contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion
groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or
development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-
cation” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales
offices are also available to help customers. A listing of sales offices and locations is included in the back of this
document.

Technical support is available through the web site at: http://microchip.com/support

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

 2018 Microchip Technology Inc. DS00002655A-page 31

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFOR-
MANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use.
Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify
and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB,
megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-
BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision
Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard,
CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench,
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher,
SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other
countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2711-7

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY	MANAGEMENT		SYSTEM	
CERTIFIED	BY	DNV	

== ISO/TS	16949	==	

DS00002655A-page 32  2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://www.microchip.com

	1.0 Introduction
	1.1 Terms and Abbreviations
	1.2 References

	2.0 LAN9252 General Description
	FIGURE 2-1: LAN9252 Block Diagram
	FIGURE 2-2: LAN9252 Modes of Operation
	2.1 LAN9252 Register Classification
	TABLE 2-1: System Controls and Status Registers

	2.2 Interrupts
	2.2.1 PDI Interrupt
	FIGURE 2-3: Functional Interrupt Mechanism

	2.2.2 DC - SYNC0 and SYNC1
	2.2.3 Timer

	3.0 LAN9252 SDK 1.x
	FIGURE 3-1: SSC Overview

	4.0 LAN9252 Hardware Abstraction Layer
	5.0 LAN9252 SDK APIs
	TABLE 5-1: Examples of SSC Predefined Macros
	FIGURE 5-1: SSC Functional Hierarchy
	5.1 LAN9252 Driver
	5.1.1 HW_Init
	5.1.2 LAN9252_Init
	5.1.3 HW_Release
	5.1.4 GetALEventRegister
	5.1.5 HW_GetALEventRegister_Isr
	5.1.6 HW_ResetALEventMask
	5.1.7 HW_SetALEventMask
	5.1.8 HW_SetLed
	5.1.9 HW_RestartTarget
	5.1.10 HW_DisableSyncManChannel
	5.1.11 HW_EnableSyncManChannel
	5.1.12 HW_GetSyncMan
	5.1.13 HW_GetTimer
	5.1.14 HW_ClearTimer
	5.1.15 HW_EepromReload
	5.1.16 Read/Write Access
	5.1.16.1 HW_EscRead
	5.1.16.2 HW_EscReadIsr
	5.1.16.3 HW_EscReadDWord
	5.1.16.4 HW_EscReadDWordIsr
	5.1.16.5 HW_EscReadWordIsr
	5.1.16.6 HW_EscReadByte
	5.1.16.7 HW_EscReadByteIsr
	5.1.16.8 HW_EscReadMbxMem
	5.1.16.9 HW_EscWrite
	5.1.16.10 HW_EscWriteIsr
	5.1.16.11 HW_EscWriteDWord
	5.1.16.12 HW_EscWriteDWordIsr
	5.1.16.13 HW_EscWriteWordIsr
	5.1.16.14 HW_EscWriteWord
	5.1.16.15 HW_EscWriteByte
	5.1.16.16 HW_EscWriteByteIsr
	5.1.16.17 HW_EscWriteMbxMem

	5.1.17 Application
	5.1.17.1 APPL_Application
	5.1.17.2 APPL_GetDeviceID
	5.1.17.3 pAPPL_EEPROM_Read
	5.1.17.4 pAPPL_EEPROM_Write
	5.1.17.5 pAPPL_EEPROM_Reload
	5.1.17.6 APPL_StartMailboxHandler
	5.1.17.7 APPL_StopMailboxHandler
	5.1.17.8 APPL_StartInputHandler
	5.1.17.9 APPL_StopInputHandler
	5.1.17.10 APPL_StartOutputHandler
	5.1.17.11 APPL_StopOutputHandler
	5.1.17.12 APPL_GenerateMapping
	5.1.17.13 APPL_AckErrorInd
	5.1.17.14 APPL_InputMapping
	5.1.17.15 APPL_OutputMapping

	5.1.18 Variables
	5.1.18.1 ApplicationObjDic
	5.1.18.2 pEEPROM

	5.2 PDI Driver
	5.2.1 General PDI API
	5.2.1.1 PDI_Init

	5.2.2 Read/Write API
	5.2.2.1 Read/Write Directly Addressable Registers
	5.2.2.2 Read/Write Indirectly Addressable Registers (EtherCAT® Core Registers)

	5.3 Slave Controller Dependent APIs
	5.3.1 Interrupt API
	5.3.1.1 PDI_Timer_Interrupt
	5.3.1.2 PDI_IRQ_Interrupt
	5.3.1.3 PDI_Enable_Global_interrupt
	5.3.1.4 PDI_Disable_Global_Interrupt
	5.3.1.5 PDI_Init_SYNC_Interrupts

	5.3.2 Interrupt Handlers
	5.3.2.1 ECAT_CheckTimer
	5.3.2.2 PDI_Isr
	5.3.2.3 Sync0_Isr
	5.3.2.4 Sync1_Isr

	5.3.3 Host Bus Interface
	5.3.3.1 PMPReadDWord
	5.3.3.2 PMPWriteDWord

	5.3.4 SPI
	5.3.4.1 SPIReadByte
	5.3.4.2 SPIWriteByte
	5.3.4.3 Macros

	6.0 SSC Tool Configuration File
	Appendix A: Revision History
	Worldwide Sales and Service

