

Integrating Converter Analog Processor – TC500A

Author: Ted Dabney,

Microchip Technology, Inc.

ADC PROVIDES FLEXIBLE PROGRAM CONTROL

Today, design engineers rely more on microprocessors and microcontrollers to support their applications. Compatible analog-to-digital (A/D) and digital-to-analog (A/D) converters have greatly increased the flexibility of interface and control circuits.

Most of the available converters, however, are "independent" and not subject to reconfiguration under software control — no matter how smart your processor. For example, if your task involves 8-bit conversions of battery voltage and 16-bit conversions of output voltage, you are required to use two different converters — or take 16 bits of time to measure your battery.

The TC500A converter from Microchip Technology, Inc. is not as independent as other converters. In fact, the TC500A only performs operations as instructed by your processor. If the initial circuit

configuration (component values and layout) is reasonable — using the rules of the data sheets for component and timing values — the TC500A converts an input to any resolution up to 16 bits (plus sign). The proper design can allow the processor to select and control the conversion parameters.

TRADE-OFF

The usual trade-off for analog-to-digital (A/D) conversion is resolution versus speed. In many cases a low degree of accuracy is all that is necessary for a given conversion. For maximum flexibility, you need a single converter to speed up when low accuracy is required.

The TC500A is a converter that lets you control the resolution-speed trade-off. It is an analog processor that permits you to program the rate and resolution of A/D conversions. The TDC500A performs the dual-slope portion of an A/D conversion and lets you write software so your microprocessor or computer can handle the digital tasks.

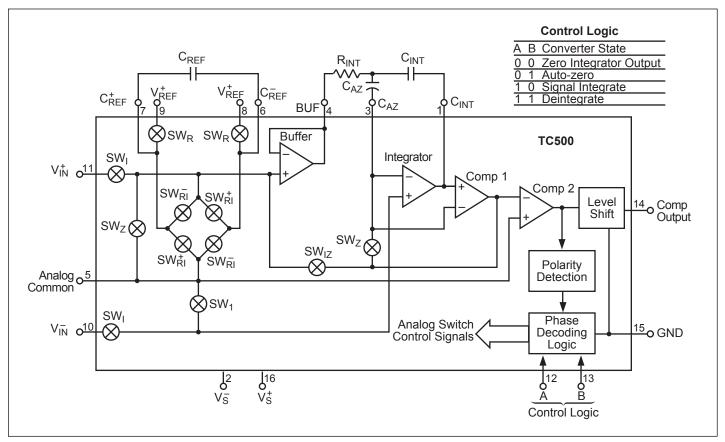


FIGURE 1: Functional diagram.

AN789

In short, this low-power CMOS device lets your software program fearlessly trade-off between high resolution (16 bits plus sign) and speed of conversion.

FOUR-PHASE CONVERSION FOR BUILDING **ANAPPLICATION**

The TC500A incorporates four separate conversion phases. Two select pins on the TC500A control the timing and sequencing of these phases.

Phase I — Input Integration

Causes the integration capacitor to charge at a rate determined by the input voltage. The duration of this phase is a fixed amount of time.

Phase II — Reference Deintegration

Causes the integration capacitor to discharge at a rate determined by the reference voltage. A zero crossing signals the end of conversion and the comparator output goes low. The amount of time required for the zero crossing is proportional to the input voltage.

Phase III — System Zero

Forces the integration capacitor to be restored to the ground reference potential. This phase may be used to correct cases where the input voltage of Phase I is so large that the Phase II does not have enough time to complete its cycle. This is an overrange condition. Also, the reference capacitor is charged to the reference voltage during this phase.

Phase IV — Auto Zero

Causes the auto-zero capacitor to be charged to a value that represents the combination of all internal offset errors. The resulting error is then cancelled by the action of Phases I and II. The reference capacitor is also charged during this phase as in Phase III.

OUTPUT

The output of the TC500A is from one pin (comparator output) that shows the phase of the input voltage (plus/minus) or indicates that Phase II is complete (the integration capacitor has discharged to the ground reference potential). This output also determines when Phase III is complete. The comparator switches back to the supply voltage when the excess charge has been removed.

COMPLETING THE CONVERSION PROCESS

Step I — System Zero

Select Phase III and wait for the comparator output to go positive. This tells you that the system is zeroed.

Step II — Auto Zero

Select Phase IV for at least the same amount of time as Phase I, but for as long as you like. This charges the reference capacitor and establishes a conversion offset in opposition to the internal offsets.

This phase is the place to recall the count obtained in Step 4 (Phase II), then calculate and display the input voltage.

Step III — Input Integration

Select Phase I for an exact amount of known time and read the comparator output just prior to ending the phase. If it is high, a positive voltage has been converted. If it is low, the input is negative.

Step IV — Reference Deintegration

Select Phase II and count intervals. Stop counting as soon as the comparator output goes low. Save the count and go directly back to Step I (Phase III). Calculation:

$$V_{IN} = V_{RFF}$$

where:

 T_{DEINT} = Reference voltage integration time (variable)

 V_{ITN} = Signal integration time (fixed) V_{REF} = Reference voltage

Note that T_{INT} must be exact and can be any value. T_{DEINT} is the variable that determines V_{IN}.

DISPLAYING THE RESULTS

First, convert the Phase II count on BCD values, then convert the BCD values to ASCII characters. Finally, send the ASCII characters to the screen, the printer, the disk file, or some other device.

RESOLUTION

The actual resolution (counts per deintegration period) available from the TC500A is a function of how many counts you can put into the Phase II cycle when converting the maximum input voltage. The rate of deintegration is determined be the reference voltage. A lower reference voltage reduces the deintegration slope and allows time for more counts.

ACCURACY

Internal noise and time-dependent errors determine the conversion accuracy (signal-to-noise ratio) of the TC500A. The dominant source of error is the 1/f noise of the buffer, integration amplifier and comparator. You can reduce some of the effect by increasing the integration time (Phase I) and the deintegration time (Phase II). You can reduce the errors caused by broadband (thermonic) noise by increasing V_{REF}. You can reduce errors caused by stray capacitance by "guarding" the integrating capacitor.

A WORD OF CAUTION

Avoid using an edge-triggered interrupt in applications where you plan to convert very low input voltages. The output of the comparator may not have enough time to complete a full transition.

COMPONENT SELECTION EXAMPLE

Known

- Supply voltage for TC500A (V_{SUP})
- Maximum input voltage $(V_{IN (MAX)})$
- Integration time (T_{INT})
- Output resolution (bits) (N)
- Clock period (t_{CLOCK})

Assume

- $V_{SUP} = \pm 5V$ $V_{SUP} = [V_{SUP}]$
- $V_{IN (MAX)} = \pm 2.5 V$ $V_{IN (MAX)} = [V_{IN (MAX)}]$ $V_{IN (MAX)} = [V_{IN (MAX)}]$
- N = 14 bits
- $t_{CLOCK} = 4\mu sec$

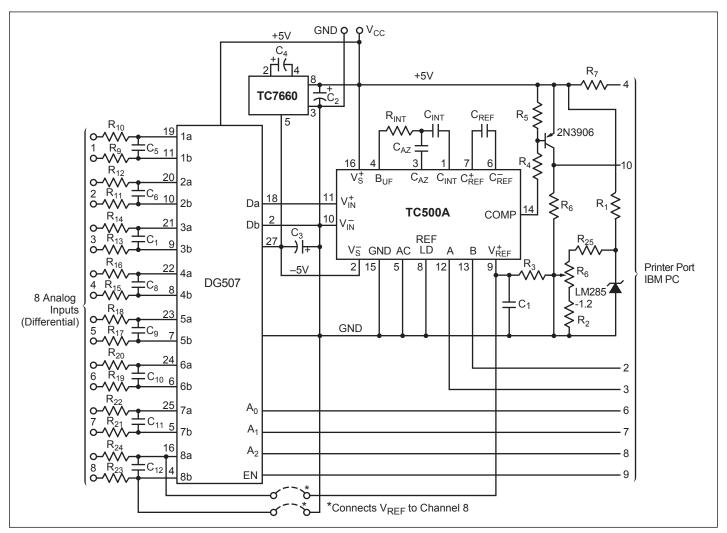


FIGURE 2: Applications.

AN789

Step 1 — Calculate R_{INT}

$$R_{INT} = \frac{V_{IN (MAX)}}{I_{BUF (MAX)}}$$

where: $I_{BUF (MAX)} \approx 10 \mu A$

$$R_{INT} = \frac{2.5V}{10\mu A} = 250K$$

Step 2 — Calculate C_{INT}

$$C_{INT} = \frac{T_{INT} I_{BUF}}{V_{INT(MAX)}}$$

where: $V_{INT} = V_{SUP} - 1V = 4V$

$$R_{INT} = \frac{40msec \quad 10\mu A}{4 \text{ V}} = 0.1\mu F$$

Step 3 — Calculate V_{REF}

$$V_{REF} = \frac{V_{INT} C_{INT} R_{INT}}{T_{DEINT}}$$

where: $V_{DEINT} = 2^{N} t_{CLOCK}$

$$R_{INT} = \frac{4V \ 0.1 \mu F \ 250 K}{2^{N} \ t_{CLOCK}} = 1.525...V$$

Step 4 — Calculate Integrate Count (K_{INT})

$$K_{INT} = \frac{T_{INT}}{t_{CLOCK}}$$

$$K_{INT} = \frac{40 \, \text{msec}}{40 \, \text{msec}} = 10,000 \text{ counts}$$

Results

$$K_{DEINT} = V_{REF} \frac{K_{INT}}{V_{DEF}} = V_{IN} \frac{10,000}{1.525...V}$$

where: K_{DEINT} = number of clock periods during T_{DEINT}

NORMALIZATION

The reference voltage can be adjusted to scale the deintegrate count to be directly equivalent to the input voltage.

Since:

$$\frac{K_{INT}}{V_{REF}}$$
 = counts/volt,

if: V_{RFF} is adjusted such that

$$V_{REF} = \frac{K_{INT}}{10.000 \text{ counts/volt}} = \frac{10,000 \text{ counts}}{10.000 \text{ counts/volt}} = 1V,$$

then:
$$K_{DEINT} = \frac{V_{IN}}{100\mu V}$$
 and $N \approx 14.61$ bits

Example: If K_{DEINT} = 18,357 counts, then V_{IN} = 1.8357 volts

CONCLUSION

The TC500A is a very flexible analog-to-digital conversion tool. This converter gives control to the microprocessor (which should know more about what it should do than it does). The programming techniques presented here will allow you to develop the software to run the TC500A on any number of currently available processors.

THE PROGRAM (MICROSOFT® MACRO ASSEMBLER)

The parallel printer port is used here for convenience. Its address is assumed to be 0378 Hex (SELECT).

- Bits 0 and 1 select the conversion phase
- Bit 3 is the comparator output from the TC500A (inverted)
- Bit 4 throught 7 elect the input channel

These routines are examples of 8088/86/286 source code. Here are the constants and variables:

SCALAR — Actual integration count determined by the resolution

CNLSEL — Shifted high nibble that selects the channelVALUE — Value of the input voltage in binary format

VALUE — Value of the input voltage in binary formatSIGN — Sign bit saved for evaluation comparator delay

CORFAC — Correction factor that compensates for comparator

delay

Phase I — Input Integration Mode

Charges the integrator capacitor at a rate determined by the input voltage for a fixed duration.

CX = Fixed duration reference count

AL = Select INT mode and channel (output to port)

O. .

DX = Port address

INITODT.

Exit mode when CX = 0

(Disable interrupts to prevent background routines from interfering.)

INTGRT:	CLI		;Disable interrupts
	MOV	CX,SCALAR	;Get integration duration
	SUB	CX,CORFAC	;Correct delay error
	MOV	AL,OF1H	;Select INT mode
	ADD	AL,CNLSEL	;Select channel
	MOV	DX,SELECT	;Select output port
	OUT	DX,AL	;Select Phase I
INTGLP:	LOOP	INTGLP	;Decrease CX and continue until CX = 0
	INI	AL DV	.Decadesiana latt

Dia abla (ataum)

IN AL,DX ;Read sign bit MOV SIGN,AL ;Save sign

FIGURE 3: Phase I.

Phase II — Reference Deintegration (DEINT)

Discharges the integrator capacitor at a rate determined by the reference voltage.

CX = Countdown timer (determines value of input)

AL = Select DEINT mode and channel (output to port)

DX = Port address

Exit mode when bit 3 = 1 or CX decrements to 0 (interrupts remain disabled)

DEINTG:	MOV	CX,0	;Maximum duration
	MOV	AL,OF3H	;Select DEINT mode
	ADD	AL, CNLSEL	;Select channel
	MOV	DX,SELECT	;Select output port
	OUT	DX,AL	;Select Phase II
DILOOP:	IN	AL,DX	;Read port
	TEST	AL,8	;Test comparator bit (bit 3)
	LOOPZ	DILOOP	;Decrease CX, continue if CX > 0 or save bit 3 = 0
	MOV	CXVAL,CX	;Save count for later evaluation

FIGURE 4: Phase II.

AN789

Phase III — System Zero (IZ)

Remove excess charge from the integrator capacitor and the auto-zero capacitor.

CX = Maximum duration

AL = Select IZ mode and channel (output to port)

DX = Port address

Exit mode when bit 3 = 0 or CX decrements to 0.

MOV

INTZRO: MOV AL.OF0H :IZ selection ADD AN, CNLSEL ;Select channel MOV DX,SELECT ;Select output port

OUT DX,AL ;Select Phase III

CX,7FFFH IZLOOP: IN AL,DX ;Get TC500A comparator

> TEST AI.8 ;Test if bit 3 is 0

LOOPNZ IZLOOP ;Decrease CX, continue if CX > 0 or bit 1 = 3

;Load up CX so the loop will loop

FIGURE 5: Phase III.

Phase IV — Auto Zero (AZ)

Charges the auto-zero capacitor to the input offset voltage and charges the reference capacitor to the reference voltage.

AL = Select AZ mode (system interrupts may be re-enabled) and channel (output to port)

DX = Port address

Puts the TC500A in auto-zero mode and exits.

AUTZRO MOV AL,OF2H ;AZ selection AL, CNLSEL ADD ;Select output DX,SELECT MOV ;Select output port

OUT DX,AL ;Select Phase IV

The binary-to-ASCII conversion and screen display of the actual program take more than enough time for proper offset correction.

CALCXX: MOV CX,CXVAL :Recall count

CMP CX.0 :Test if count = 0

NOTOVF JNE ;If count not 0, then no over-range

Set up over-range message for display:

MOV DX.OFFSET OVFMSG SETOVF;

MOV MSGOUT.DX **JMP SAVECX**

Phase II uses CX as a down-counter, so CXVAL is the complement of the true count.

NOTOVF: XOR CX,OFFFH ;Complement CXVAL

SAVECX: MOV VALUE, CX ;Save it in VALUE (0 if over-range)

FIGURE 6: Phase IV.

epend on specific applications		
CALL	XFORM	;Modify the transform function
CALL	BIN2BCD	;Convert VALUE to BCD
CALL	ASCII	;Convert BCD to ASCII characters
CALL	DISPLAY	;Display the results
CALL	KEYBRD	;Test if there's input on the keyboard
JMP	INTGRT	;and start all over again

FIGURE 7: Optional subroutines.

The comparator delay factor can be adjusted out with the reference voltage in systems that are designed for fixed resolution. This application has several different levels of resolution and the delay represents a different percentage for each level. CORFAC is selected to have the same percentage relationship to SCALAR as the delay has to the deintegration period.

The SCALAR value is the reference count that determines the resolution of the conversion process. As this value is increased or decreased, more or fewer counts are available during the deintegrate phase. The ratio of the two counts (SCALAR and VALUE) is still directly proportional to the input voltage for any fixed $V_{\rm RFF}$.

If SCALAR is divided by 2, for example, the input voltage is equal to VALUE times 2. Of course, the significance of the LSB is lost and the resolution is reduced by 1 bit. Divide SCALAR by 4, multiply VALUE by 4 and two LSBs are lost. The advantage is that the conversion time would be four times faster.

A keyboard input routine permits changing the SCALAR value by a multiple of 2 and corrects VALUE by the same amount. No changes to the circuit values are needed because only the reference voltage is part of the conversion equation and its effect has not changed.

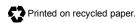
TRANSFER FUNCTION TRANSFORMATION

The program could be expanded to include a routine (or several routines) that would modify or linearize the transfer function(s) per input channel. A simple lookup table or more complex algorithm could be implemented.

NOTES:

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350

Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180

Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001

Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338

New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office

Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office

Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China

Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai

Microchip Technology Consulting (Shanghai)

Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051

Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China

Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong

Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office Divvasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/01/02

