AT89C51 In-Circuit Programming

This application note illustrates the in-cir-
cuit programmability of the Atmel
AT89C51 Flash-based microcontroller.
Guidelines for the addition of in-circuit
programmability to AT89C51 applica-
tions are presented along with an appli-
cation example and the modifications to
it required to support in-circuit program-
ming. A method is then shown by which
the AT89C51 microcontroller in the
application can be reprogrammed
remotely, over a commercial telephone
line. The circuitry described in this appli-
cation note supports five volt program-
ming only, requiring the use of an
AT89C51-XX-5. The standard AT89C51
requires 12 volts for programming.

The software for this application may be
obtained by downloading from Atmel’s
BBS: (408) 436-4309.

General Considerations
Circuitry added to support AT89C51 in-
circuit programming should appear
transparent to the application when pro-
gramming is not taking place.

EA/VPP must be held high during pro-
gramming. In applications which do not
utilize external program memory, this pin
may be permanently strapped to Vcc.
Applications utilizing external program
memory require that this pin be held low
during normal operation.

RST must be held active during pro-
gramming. A means must be provided
for overriding the application reset cir-
cuit, which typically asserts RST only
briefly after power is applied.

PSEN must be held low during program-
ming, but must not be driven during nor-
mal operation.

ALE/PROG is pulsed low during pro-
gramming, but must not be driven during
normal operation.

During programming, AT89C51 I/O ports
are used for the application of mode
select, addresses and data, possibly
requiring that the controller be isolated
from the application circuitry. How this is
done is application dependent and will
be addressed here only in general
terms.

Port Used for Input

During programming, the controller must
be isolated from signals sourced by the
application circuitry. A buffer with three-
state outputs might be inserted between
the application circuitry and the control-
ler, with the buffer outputs three-stated
when programming is enabled. Alter-
nately, a multiplexer might be used to
select between signal sources, with sig-
nals applied to the controller by either
the application circuitry or the program-
mer circuitry.

Port Used for Output

No circuit changes are required if the
application circuitry can tolerate the state
changes which occur at the port during
programming. If the prior state of the
application circuitry must be maintained
during programming, a latch might be
inserted between the controller and the
application circuitry. The latch is enabled
during programming, preserving the
state of the application circuitry.

An Application Example

The AT89C51 application shown in Fig-
ure 1 is an implementation of a moving
display. This application was selected for
its simplicity and ability to show graphi-
cally the results of in-circuit reprogram-
ming. The text to be displayed is pro-
grammed into the controller as part of its
firmware, and cannot be changed with-
out reprogramming the device.

AIMEL

8-Bit
Microcontroller
with Flash

Application
Note

0287D-B-9/97

5-11



AIMEL

The displayed text is presented in one of two modes
selected by the four-position DIP switch. In the first mode,
one character at a time enters the display from the right
and moves quickly to the left through each element of the
display to its final position in the assembled message. In
the second mode, the message moves through the display,
from right to left, with the display acting as a window onto
the message. This mode is familiar as the method often
used in displays of stock prices.

The output consists of four DL1414T, four-digit, 17-seg-
ment alphanumeric displays with integral decoders and
drivers. This yields 16 total display elements, each capable
of displaying digits 0-9, the upper case alphabet, and some
punctuation characters. The displayable character codes
are ASCII 20H-5FH.

A power-on reset circuit and a 6-MHz crystal oscillator
complete the application. Neither external program memory
nor external data memory is used.

Modifications to the Application to Support
In-Circuit Programming

Figure 2 shows the application modified for in-circuit
programming.

It is assumed that the programmer, when inactive, will nei-
ther drive nor excessively load the application.

Since the application does not use external program mem-
ory, EA/VPP on the controller is connected to V¢. This
meets the requirement for programming.

The reset circuit has been modified by the addition of two
transistors, which allow RST on the controller to be forced
high by the programmer.

PSEN and ALE/PROG, unused in the basic application, are
under the direct control of the programmer.

Programming requires programmer access to all of the four
AT89C51 I/0O ports, as documented in the data sheet. The
programmer is connected directly to those controller pins
which are unused by the application, while access to pins
used by the application requires special treatment, as
explained in the following paragraphs.

The least significant four bits of the address generated by
the programmer are multiplexed onto port one of the con-
troller with the data from the DIP switch. Note that the four
resistors added at the switch are not required in the basic
application, since the AT89C51 provides internal pull-ups
on port one.

During the normal operation of the application, controller
ports zero and two provide data and control signals
(respectively) to the displays. During programming and pro-
gram verification, the programmer asserts control of port
zero and part of port two. The programmer is connected to
ports zero and two without buffering, since, when inactive,
its presence does not affect the normal operation of the
application.

512 Microcontroller

A transparent latch has been added between port two of
the controller and the display control inputs. The latch holds
the display control signals inactive during programming,
which eliminates erratic operation of the displays due to
programmer activity on ports zero and two. No isolation of
the display data inputs is required, since data applied to the
inputs is ignored when the control signals are inactive.

The AT89C51 reset circuit, input multiplexer and output
latch are controlled by a single signal generated by the pro-
grammer. During programming, reset is asserted, the multi-
plexer switches inputs, and the latch freezes the display
control lines.

To ensure that the display control lines are in a known state
before they are latched, an AT89C51 external interrupt is
used to allow the programmer to signal the application
before asserting reset. The application firmware responds
to the interrupt by displaying a message and deactivating
the display control lines.

After programming, when reset is deasserted, the controller
ports are high as the latch becomes transparent. Since the
display control inputs are inactive high, the display contents
are not disturbed until the new program writes the display.

Although not essential to this application, it might be imper-
ative in some applications that the state of the peripheral
circuitry not be disturbed during programming.

The Programmer

The programmer (Figure 3) generates the addresses, data
and control signals necessary to program the AT89C51
embedded in the application.

The programmer circuitry consists of an AT89C51 and an
RS-232 level translator. The controller runs at 11.0592
MHz, which allows the serial port to operate at a number of
standard baud rates. A Maxim MAX232 line driver/receiver
produces RS-232 levels at the serial interface while requir-
ing only a five volt supply.

Many of the signals generated by the programmer are con-
nected directly, without buffering, to the AT89C51 in the
application. These signals, when inactive, are not three-
stated, but are pulled high. The AT89C51 has internal pull-
ups of approximately three Kohms on ports one, two and
three. Because port zero does not have internal pull-ups,
external pull-ups of ten Kohms have been added to permit
proper operation of program verification mode. The sample
application operates correctly in this environment. If
required for compatibility with an application, programmer
signals may be buffered with three-state buffers similar to
the 74xx125.

The AT89C51 in the programmer does not utilize external
program or data memory, which would require sacrificing
needed I/O pins. This requires that program code and 1/0O
buffers be kept small enough to fit in on-chip memory.



s |\ | CrOCONtroller

Remote Programming Over a Commercial

Telephone Line

The programmer and display application described previ-
ously are connected to a phone line via a modem at a
remote site. Using a personal computer with a modem, a
user can upload a new program containing a new mes-
sage, which is programmed into the AT89C51 embedded in
the application. When programming is complete, the appli-
cation executes the new program, which displays the new
message.

Local Station

The local station in the test configuration consists of an IBM
PC AT-class computer connected to a Hayes-compatible,
Prometheus 1200 baud modem. The modem was selected
because it was inexpensive and available. A faster modem
may be used if desired, although once the file transmission
time is reduced below one minute, further reductions in
transmission time do not further reduce connect time
charges. A possible advantage to higher transmission
speeds is the automatic error detection and correction
available in some high speed modems.

Procomm Plus version 2.01, a commercial data communi-
cations package, is used to configure the modem, set up
communications parameters, and establish a link with the
remote modem. Procomm Plus includes a macro language
called ASPECT, which allows the user to write and compile
scripts which implement custom file transfer protocols. A
simple ASPECT script was written to read the contents of a
program file and upload it to the remote programmer.

The file transfer protocol (FTP) implemented is a simple
send-and-wait, packet-oriented protocol. The transmit and
receive modes of the FTP are illustrated by the flowcharts
in figures 4 and 5, respectively. The transmitter sends each
packet without flow control and waits for a response. The
programmer (the receiver) reads and dissects the packet
while calculating a checksum. If the calculated checksum is
valid, the programmer acknowledges the packet by send-
ing an ACK. If the checksum is in error, the programmer
negatively acknowledges the packet by sending a NAK.
Upon receipt of an ACK, the transmitter sends the next
packet. If the transmitter receives a NAK, it resends the
same packet. Transmission proceeds in this manner until
the entire file has been transferred.

The programmer might respond to a packet by sending a
CAN, which indicates that a non-recoverable error has
occurred and that the transmitter should immediately abort
the file transfer. If the programmer fails to respond to a
packet within a limited period of time, the transmitter will
resend the same packet. The transmitter will continue to
resend the same packet until a valid response is received
or until the allowed number of attempts is exceeded, at
which time the file transfer is aborted.

AIMEL

After each packet is received and validated by the pro-
grammer, the data contained in the packet is programmed
into the AT89C51 controller in the application. After pro-
gramming, the data is read back from the controller and
verified against the received packet data. Successful verifi-
cation indicates successful programming, causing the pro-
grammer to send ACK to the transmitter. If programming
fails, the programmer sends CAN to signal the transmitter
to abort the file transfer.

The simplicity of the FTP reduces the amount of AT89C51
program memory used in the programmer. The send-and-
wait nature of the FTP allows inter-packet delays due to
AT89C51 program and erase times to be easily absorbed.
Support for program verification is transparent, requiring no
explicit command or result codes, or additional data trans-
fers.

The files which are uploaded to the programmer are cre-
ated with the tools in the Intel MCS-51 Software Develop-
ment Package for the IBM PC. Included in the package are
the MCS-51 Macro Assembler, MCS-51 Relocator and
Linker, and a useful utility, OH. OH converts an absolute
8051 object file to an equivalent ASCII hexadecimal object
file.

The records in the hex file produced by the OH utility serve,
unchanged, as the packets in the FTP described above; no
service fields need to be added. The colon which begins
each record serves as the packet signature field. The load
address field serves as the packet sequence number. A
checksum is provided as the last field in each record. Since
seven-bit ASCII coding is utilized, the eighth bit of each
byte is available to be used for parity checking.

Because the AT89C51 in the programmer does not utilize
external data memory, necessary packet buffering must be
done using internal RAM. Limited memory precludes the
use of conventional FTPs which utilize packets of 128
bytes and larger. The hex packet format used in this appli-
cation limits packet data fields to 16 or fewer entries, requir-
ing little memory for buffering.

The ready availability of a utility for creating the packetized
program file, combined with small packet size and ade-
guate error checking, makes the hex packet format a near
ideal solution for this application. A disadvantage is the use
of ASCII, which requires each program data byte to be
expressed as two hex characters. This demands that
nearly twice as many bytes be transferred as might other-
wise be required. This is not a severe limitation, however,
since typical file transfer times are less than one minute.
Overall, the simplicity of the custom FTP/hex packet format
implementation outweighs the drawbacks.

Remote Station

The remote station in the test configuration consists of the
display application and programmer circuits, described pre-
viously, connected to a Hayes-compatible, Prometheus

5-13



AIMEL

1200 baud modem. During normal operation, the applica-
tion executes its internal program while the modem and
programmer monitor the phone line for incoming calls.

After a call has been detected and a connection estab-
lished, the programmer forces the application to suspend
execution of its program. The new program is then down-
loaded and programmed into the AT89C51 embedded in
the application. When programming is complete, the appli-
cation is allowed to begin execution of its new program,
and the programmer returns to monitoring the phone line
for the next call.

The programmer powers up with its programming control
outputs inactive, allowing the application to run normally.
After configuring the modem to answer incoming calls, the
programmer puts itself to sleep. The programmer will not
disturb the application until a new program is to be down-
loaded.

The programmer controls the modem by sending ASCII
command strings over the serial interface, to which the
modem responds with Hayes-style ASCII numeric codes.
The software is designed for use with Hayes-compatible
modems, which includes the Prometheus ProModem 1200
used here.

The serial interface, through which the programmer con-
nects to the modem, supports two handshaking signals,
DTR and DSR. On power up, the programmer asserts
DTR, to which the modem responds by asserting DSR. If
the modem should fail to respond to any command, includ-
ing the command to hang up, the programmer deasserts
DTR, which forces the modem to drop the line.

The modem monitors the phone line while the programmer
sleeps, waiting for an incoming call. When a call is
detected, the modem answers and attempts to establish
communication with the caller. If a connection is estab-
lished, the modem sends a code to the programmer, wak-
ing it up. The programmer verifies the connect code and
begins polling for a valid packet header.

Incoming packets must arrive fewer than thirty seconds
apart, or the modem drops the line (hangs up) and the pro-
grammer returns to sleep, waiting for the next call. If the
caller hangs up, the thirty second period must expire before
another call will be answered. Calls incoming during the
reset delay period are ignored.

If a valid packet header is received prior to the expiration of
the reset delay period, the programmer will attempt to read
and validate the incoming packet. At any time during
packet reception, an invalid character, parity error or time-
out during character reception will cause the partial packet
to be declared invalid and discarded.

Two packet types are defined: data and end-of-file. A data
packet contains five fields in addition to the packet header,
one of which is a variable length data field. The data field
contains program data to be written into the AT89C51 con-

514 Microcontroller

troller in the application. The load address field contains the
address at which the data is to be written. The end-of-file
packet contains the same fields as the data packet, except
that the data field is empty. This packet type has special
meaning to the programmer, as explained below.

Any packet which contains an invalid record type, record
length or checksum is invalid. Program data accumulated
during the processing of an invalid packet is discarded. The
programmer sends a NAK to the transmitter to signal
reception of an invalid packet and resumes polling for a
valid packet header.

Receipt of the first valid data packet causes the program-
mer to interrupt the application controller. The controller
responds to the interrupt by abandoning execution of its
usual program and displaying a message indicating that
programming is taking place. If this is the first valid data
packet since power was applied or an end-of-file packet
was received, the programmer asserts the control signals
necessary to erase the program memory in the application
controller. The programmer then places the controller in
programming mode.

The first and subsequent valid data packets are dissected
as they are received and the data which they contain is pro-
grammed into the application controller at the address indi-
cated in the packet load address field. After programming,
the data is read back from the controller and verified
against the received packet data. Successful verification
indicates that programming was successful, causing the
programmer to send ACK to the transmitter. The program-
mer then resumes polling for a valid packet header, subject
to the thirty second reset delay.

If programming fails, the programmer sends CAN to signal
the transmitter to abort the file transfer. The modem drops
the line and the programmer returns to sleep, waiting for
the next call. The application controller is left in program-
ming mode, preventing it from executing the incomplete or
invalid program which it contains.

It is important to note that invalid packets are NEVER pro-
grammed into the application controller. To do so would
require that the program memory in the controller be com-
pletely erased before the error could be corrected, causing
the non-recoverable loss of all previous program data.

Upon receipt of an end-of-file packet, the programmer
returns its control outputs to the inactive, power on state,
allowing the application controller to begin execution of the
new program. The programmer then resumes polling for a
valid packet header, subject to the thirty second reset
delay.

If a valid packet is received prior to the expiration of the
thirty second delay, another programming cycle begins,
which can only be terminated by the reception of a valid
end-of-file packet.



s |\ | CrOCONtroller

If the reset delay expires prior to the reception of a valid
end-of-file packet, the modem will drop the line and the pro-
grammer will return to sleep, waiting for the next call. In this
case, the application controller is left in programming
mode, preventing it from executing its program. To return
the application to normal operation, another call must be
received, and a valid program file uploaded, terminated by
an end-of-file packet.

Setting Up the Hardware

Local Station

Connect the IBM PC to the ProModem 1200 through one of
the system COM ports. Connect the modem to an analog
telephone line and set the modem switches as indicated
below.

Switch settings:

ON
ON
OFF
ON
OFF
ON
OFF
OFF
OFF
OFF

© 0o N O WDN PR

[EnY
o

Remote Station

Connect the display application/programmer to the second
ProModem 1200 through the programmer serial port. Con-
nect the modem to an analog telephone line and set the
modem switches as indicated below.

Turn the modem on and apply power to the display applica-
tion/programmer. The application will begin executing its
program, if it contains one. The programmer will initialize
the modem, as shown by the activity on the modem status
indicators.

Switch settings:

ON
ON
ON
OFF
ON
ON
ON
OFF
OFF
OFF

© 0N O U~ WN P

=
o

AIMEL

Installing and Configuring Procomm Plus,
Version 2.01

Install Procomm Plus as instructed in the User Manual.
When prompted to specify the modem in use, select
‘Prometheus ProModem 1200’ from the list.

Run Procomm Plus and create a dialing directory entry for
the remote station. The baud rate must be set to 1200, par-
ity to EVEN, number of data bits to 7, number of stop bits to
1, plex to HALF.

Enter the Setup utility (ALT-S). Select 'PROTOCOL
OPTIONS’, then 'EXTERNAL PROTOCOL OPTIONS' from
the menus and modify the entry for 'EXTERNAL PROTO-
COL 1’ as indicated below.

EXTERNAL PROTOCOL 1:

A - NAME: <any name>
B - TYPE: ASPECT
C - UPLOAD COMMAND: ATX.ASX

Note:  'ATX.ASX! is the filename of the compiled ASPECT

script to be associated with External Protocol 1.
Save the changes and exit the Setup utility.

Creating a Hex File
The hex files which are uploaded to the programmer are
created with the tools in the Intel MCS-51 Software Devel-
opment Package for the IBM PC. In the example below, the
8051 assembler source file is called "'TEST.ASM'.
Assemble the source file 'TEST.ASM’ and create the object
file 'TEST.OBJ"

ASM51 TEST.ASM
Link and locate the object file 'TEST.OBJ' and create the
absolute object file ' TEST.ABS™

RL51 TEST.OBJ TO TEST.ABS

Convert the absolute object file " TEST.ABS' to the hex file
"TEST.HEX':

OH TEST.ABS TO TEST.HEX
The resulting file, TEST.HEX’ is ready to be uploaded.

Note: ASMb51 is version 2.3; RL51 is version 3.1; OH is version

1.1.

Uploading a Hex File

Run Procomm Plus and use the proper dialing directory
entry to dial the remote station.

After the connection with the remote station is established,
press the 'PgUp’ key and select '1’ (External Protocol 1)
from the menu of upload protocols. This will execute the
ASPECT script associated with External Protocol 1.

When prompted, enter the name of the file to be uploaded,
including the extension and path, if required.

When the upload is complete, press ALT-H to hang up and
ALT-X to exit Procomm Plus and return to DOS.

5-15



AIMEL

Figure 1. AT89C51 Moving Display Application Example

/ N U2
8 | Do
9 | b1
10 | D2
11 | D3
2 | Da
1| bs
12 | D6
vce 5| AO
T 4| AL
Ny
WR
Lo
10 uF DL1414T
c2 U1
}
30 pF L 311 Eavep P0.0 227 u3
RL Y1 19 POL ey 8 | bo
8.2K |:| 6 MHz XTAL1 P0.2 E 79 D1
P03 | —— 2
c3 T P04 35 10 | D2
| 181 xTAL2 POS5 |21 — —
30 pF P06 [ —
91 RsT po7 |32 —1]05
12 | D6
101 Paomxo P20 |52 2 2‘;
5] PavmO P21 5=
13 P3.2/INTO P2.2 s 3 WR
14| P3.3NTL P23 [5e——
——==1 P3.4/T0 P2.4
15| e pos |26 DL1414T
S1 27
1 8 1 P2.6 28
> I 5 > P1.0 P2.7
3 I 6 3 P1.1 u4
I P1.2 2g
S male 41p13 PSEN p22 ___8|Do
51p14 ALE/PROG |30 ___9|nD1
SW DIP-4 6 1p1s - ___ 10| D2
1 P16 P3.6/WR % 1 )os
81p17 P3.7/RD [T 2| D4
v 1| o5
AT89C51 12 | b6
5 | A0
4| AL
34 wr
Note: 0.1 uF bypass caps on all ICs.
DL1414T
us
8 | bo
9 | b1
10 | D2
11 | b3
2 | Da
1| bs
12 | D6
5 | A0
a|Al
3 Wr
DL1414T

5-16 Microcontroller s



Figure 2.

AT89C51 Moving Display Application Modified for In-Circuit Programming

Microcontroller

DATA 70 N U2
s [0
N
NEEETE )
NEEETH )
RESET# > K24
v NN
' K12 pe
5 | a0
R 4| a1
10K Irei 3|
R3 i Q1 T ouF WR
51K « 2N2222A
DL1414T
c2 Ut
Q@ o . 39
P U3
K Nesoon o s0pF | EAVPP roo |51
vi 19 37 ks [po
82K XTAL1 P02
6 MHz ol E N
cs T ol E 10| o2
)| 18 ] xtAL2 pos f22 1 Voo _—
30 pF P06 22— 2] D4
v p 9| mer el R NN
U T
10| oo om0 poo |21 s[oo co] 2 5 | a0
11 p31mxo P21 |22 alor ci[ s 1 A
—2d P32 P22 |23 B s wm
[SHUTDN# P3.3/INTT P23 84Db3 C3)| 9
[N Sl ol 5 13)ps caf12
151 P35t pos [ 28 1a|ps cs s DL1414T
vr ’ poe |27 17| D6 s |16
A0 ] pyms ) oo o ) 18|07 c7 |19
At 3 b 7 ol 1]oc Ui
A 2v P12
st —
. . yemm—rt A s T b = e —
3 3 A4 5 1 pig ALE/PROG 9|
2 E 7 10] 38 25 6| pis 74HCT373 NERETE )
3 6 A3 14 12 f e 7 wa |16 11| o3
Y A6 7 1pig P3.6/WR N 11 ]
4 E 5 181 48 AT_81pi7 P3.7/RD |17 v e
- N 1|Ds
v SW DIP-4 1; AB AT89C51 \___12 | D6
G
vee 510
- 74HCT157 A
MWW 34 wR
10K
DL1414T
RS
WW
10K Us
R6 N )
AW o fo
oK =T )
NEEETH )
R7 Alalala 2| D4
1] os
WW 11[9|8 ——
10K 1 \__12 | pe
[At10 > 5 | a0
4| a1
P37
P3.6 ; 34 Wr
[PROGH# DL1414T
[ PSEN#

P2.7
P2.6

AIMEL

Note: 0.1 uF bypass caps on all ICs.

5-17



AIMEL

Figure 3. AT89C51 Programmer

VCC
J_ y DATA 7:0
*ca
10uF
cs us RN1 vee
V| T
11 —
30 pF L 311 Eavpe P0.0 gg g? g? g 1
R8 Y2 19 POl s D2 fp2 4
82K 11.0592 MHz XTAL1 Eg-g 36 D3 J D3 5
1 1 18 AR N
3 XTAL2 Eg'g 33 D6 4. D6 8
30 pF 9| pst po7 |22 D7 ND7_9
‘ : 10
BX__ 10 ] p3 o/RxD po.o | 2L A0, 10K SIP
X 11 22 Al
P3.1/TXD p2.1 |22 A1
DIR__ 12 il 23 A2
P3.2/INTO p22 |22 A2
DSR__ 13 AL 24 A3
P3.3/INTT P23 [22- A3
14 25 A4
i5| P340 P24 [-2oae-
P3.5/T1 P25 57 A" Note: 0.1 uF bypass caps on all ICs.
P26 |2 25
A8 1lpg po7 |28 A7
A 2]y
A0 3] pyo
A1 4 Qpy, PSEN p29
51 p1a ALE/PROG |30
3 P15 = | 16
P1.6 P3.6IWR [ PSEN# |
81p17 P3.7/RD RESET# |
AT89C51
P3.7
P3.6
P2.7
P26
A11:0 |
PROG# |
SHUTDN# |
J
@L
o2
MU BT c7
M i
o §28 1t
10
o—5— 10/6.3
9 +
o cs
21 —
el o — 15 T 1063 \
Sl .= — uo
g © 7 2 1
V+ Cl+
z S 12 + c10
10/6.3
S K - 6|y oo ls T
o S A co+ |4
4 L ©o + c1o0
o B 10/16 10/16
3 + .
15
2 E);R 1§ TOUT  TIIN 1(1)
R B 5] T20UT 2N [53
oA o RN R1OUT 2
R2IN R20UT
DB25-S
DTE \V4 MAX232

5-18 Microcontroller s



Figure 4. FTP Transmit Mode

Microcontroller

Send Record

Receive
ACK (7F)

Last Record

A

Receive
NAK (*U)

Receive
CAN ("X)

Tx Attempts
Exceeded

<4+——O

End

AIMEL

5-19



AIMEL

Figure 5. FTP Receive Mode

Y &
«Q
A 5

4
A

Packet
Header
Y
Abort
Get Packet .

‘e | Send NAK (rU) . Pa(;’:zet
Disable Programming

Erase AT89C51

Programming
Enabled

Enable Programming

Write Data

Verify Data

Send ACK (~F) '4—

Send CAN ( ‘i

<

End

5-20 Microcontroller




s |\ | CrOCONtroller

Appendix I: Intel Hex File Definition

Hexadecimal object file format (Intel hex) is produced by
most 80C51 assembler products.

Each record in the file contains the following fields:
<:><rec length><load address><rec type><data><check-
sum>

The colon is the record header.

The record length field consists of two hex digits, and rep-
resents the number of entries in the data field. OH outputs
records containing 16 or fewer data field entries.

The load address field consists of four hex digits, and indi-
cates the absolute address at which the data in the data
field is to be loaded.

AIMEL

The record type field consists of two hex digits, which are
always zero in data records.

The data field contains from one to 16 pairs of hex digits.

The last two hex digits are a checksum on the record
length, load address, record type, and data fields. The sum
of the binary equivalents of these fields and the checksum
itself is zero.

Each record in the file is terminated by a carriage return
and line feed.

A type one record marks the end of the file. The record
always contains the following value: :00000001FF’.

5-21



