

Interfacing with Single-Wire Serial EEPROMs

Author. Erik Fasnacht

Microchip Technology Inc.

INTRODUCTION

The AT21CS Series is a family of Serial Electrically Erasable and Programmable Read-Only Memory (EEPROM) that utilizes the Single-Wire Interface (SWI) protocol.

The family software addressing scheme allows up to eight devices to share a common single-wire bus. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. Some applications examples include analog sensor calibration data storage, ink and toner printer cartridge identification, and management of after-market consumables. The family is available in space-saving package options and operates with an external pull-up voltage on the SI/O line.

HARDWARE

The hardware used in conjunction with the firmware is shared with the Serial Memory Single-Wire Evaluation Kit (DM160232). For additional information about the hardware, refer to the DM160232 User Guide found at http://www.microchip.com. Figure 1 illustrates the hardware used with the source code.

Note: To power the hardware, the USB Base

Board should be plugged into a 5V USB

port.

FIGURE 1: USB BASE BOARD AND SWI SOCKET BOARD

Figure 2 is the hardware schematic that depicts the interface between the Microchip AT21CS Series of devices and the USB Base Board microcontroller, AT90USB1287. The schematic shows the necessary connections between the microcontroller and the serial EEPROM as tested. The software was written assuming these connections. The single I/O connection between the microcontroller and the serial EEPROM includes a recommended pull-up resistor.

FIGURE 2: HARDWARE CIRCUIT

FIRMWARE

The purpose of the firmware is to show how to generate specific single-wire bus transaction using a generic I/O pin on the microcontroller. The focus is to provide the user with a strong understanding of communication with the AT21CS Series devices, thus allowing for more complex programs to be written in the future.

The firmware was written in C using Atmel Studio 7.0 and shares code with the Serial Memory Single-Wire Evaluation Kit (DM160232) firmware. Most of the complex tasks have been done in the firmware and the user is not expected to write any low-level subroutines.

Oscilloscope screen shots of the firmware and hardware are shown in this application note to assist in better understanding single-wire bus transactions.

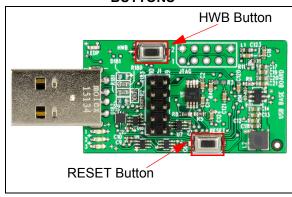
Initialization

In order to use the firmware with the hardware, the firmware needs to be programmed to the DM160232 USB Base Board. The user should use the hex file (seeprom.hex) found in the "default" folder and program the firmware to the USB Base Board using the FLIP Software Utility.

Note:

In order to program the firmware to the USB Base Board, the user must use the USB Base Board Firmware Upgrade Procedure in the DM160232 User Guide found at http://www.microchip.com.

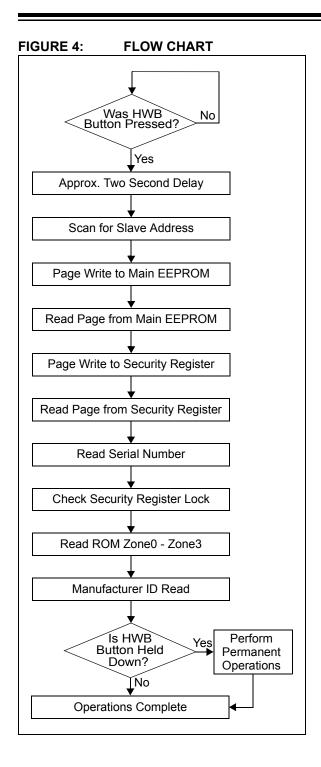
Once the firmware is programmed to the USB Base Board, the transactions can be monitored using an oscilloscope and the supplied test points.


Note:

In order to restore the initial DM160232 firmware, the Firmware Upgrade Procedure should be performed again using the initial firmware. This initial firmware location is specified in the DM160232 User Guide found at http://www.microchip.com.

Overview

The firmware uses the USB Base Board HWB button to start sending single-wire bus transactions. The RESET button is used to reset the microcontroller. Figure 3 highlights the location of the HWB and RESET buttons.


FIGURE 3: USB BASE BOARD BUTTONS

After the HWB button is pressed, an approximate two second delay is initiated. After the delay, single-wire bus transactions will be transmitted. Once all bus transactions are complete, three red LEDs located on the USB Base Board will illuminate. Figure 4 is a flowchart representing the bus transactions.

The firmware includes permanent operations to the AT21CS Series device that once completed, cannot be undone. Therefore, the firmware expects the HWB button to be held down after the initial press to ensure these operations should be performed. Below are the additional permanent operations:

- · Lock Security Register
- · Write-Protect ROMZone0 ROMZone3
- · Freeze ROM Zone State

The hardware supplies the V_{PUP} to the device. The firmware is setup to supply 3.3V to the device and this value can be changed by the user.

The firmware also includes a scan for the corresponding slave address on the installed device. This is accomplished by performing a Reset and Discovery Response, followed by a device address byte. The device address byte will start with slave address 0 (000b) and will check whether the device ACKs the byte. If the device NACKs, the firmware will increment the slave address and perform the sequence again until the device ACKs. Once an ACK is detected, the firmware will recognize that slave address and that address will be used for other operations.

SINGLE-WIRE COMMUNICATION

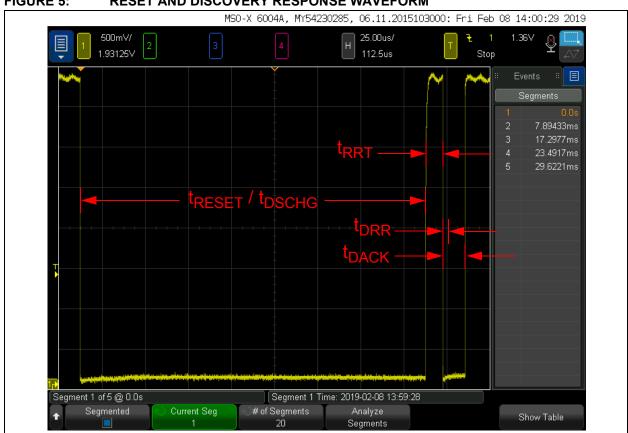
Types of data transmitted over the SI/O line:

- · Reset and Discovery Response
- Data Input
 - Logic '0' or Acknowledge (ACK)
 - Logic '1' or No Acknowledge (NACK)
- · Data Output
 - Logic '0' or Acknowledge (ACK)
 - Logic '1' or No Acknowledge (NACK)
- · Start and Stop Condition

Communication with the device is conducted in time intervals referred to as a bit frame and lasts $t_{\rm BIT}$ in duration. Each bit frame contains a single binary data value. Input bit frames are used to transmit data from the master to the slave device and can either be a logic '0' or a logic '1'. An output bit frame carries data from the slave device to the master. In all input and output cases, the master initiates the bit frame by driving the SI/O line low. Once the slave device detects the SI/O being driven below the VIL level, its internal timing circuits begin to run.

The duration of each bit frame is allowed to vary from bit to bit as long as the variation does not cause the t_{BIT} length to exceed the specified minimum and maximum values.

Note:


The Reset and Discovery Response is not considered to be part of the data stream to the device, whereas the remaining transactions are all required in order to send data to and receive data from the device. The difference between the different types of data stream transactions is the duration that SI/O is driven low within the bit frame.

Reset and Discovery Response

A Reset and Discovery Response sequence is used by the master to reset the slave device as well as to perform a general bus call to determine if any devices are present on the bus.

To begin the reset portion of the sequence, the master must drive SI/O low for a minimum time. If the slave device is not currently busy with other operations, the master can drive SI/O low for a time of t_{RESET} . The length of t_{RESET} differs for Standard Speed mode and for High-Speed mode. Figure 5, shown below, illustrates the Reset and Discovery Response.

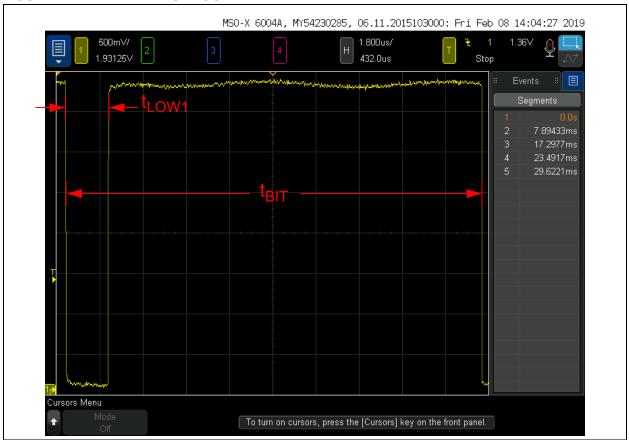
Data Input

A data input bit frame can be used by the master to transmit either a logic '0' or logic '1' data bit to the slave device. The input bit frame is initiated when the master drives the SI/O line low. The length of time that the SI/O line is held low will dictate whether the master is transmitting a logic '0' or a logic '1' for that bit frame. For a logic '0' input, the length of time that the SI/O line must be held low is defined as t_{LOW0} . Similarly, for a logic '1' input, the length of time that the SI/O line must be held low is defined as t_{LOW1} .

The slave device will sample the state of the SI/O line after the maximum t_{LOW1} but prior to the minimum t_{LOW0} after SI/O was driven below the V_{IL} threshold to determine if the data input is a logic '0' or a logic '1'. If the master is still driving the line low at the sample time, the slave device will decode that bit frame as a logic '0' as SI/O will be at a voltage less than $V_{IL}.$ If the master has already released the SI/O line, the slave device will see a voltage level greater than or equal to V_{IH} because of the external pull-up resistor, and that bit frame will be decoded as a logic '1'.

LOGIC '0'

A logic '0' condition has multiple uses in the I²C emulation sequences. It is used to signify a '0' data bit, and it also is used for an Acknowledge (ACK) response. Figure 6 depicts the logic '0' input bit frame.

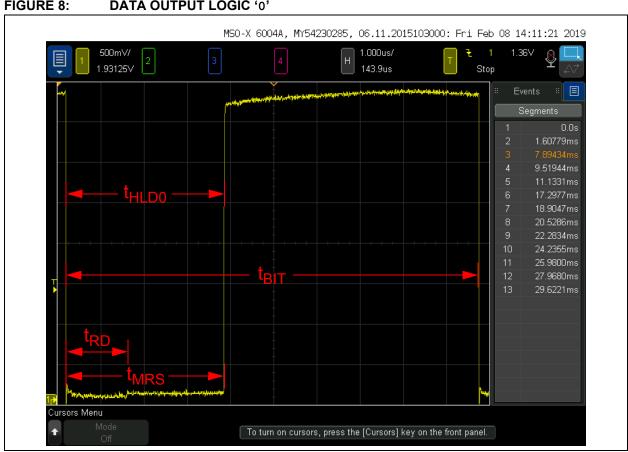


LOGIC '1'

A logic '1' condition has multiple uses in the I^2C emulation sequences. It is used to signify a '1' data bit, and it also is used for an No Acknowledge (NACK) response. Figure 7 depicts the logic '1' input bit frame.

FIGURE 7: DATA INPUT LOGIC '1'

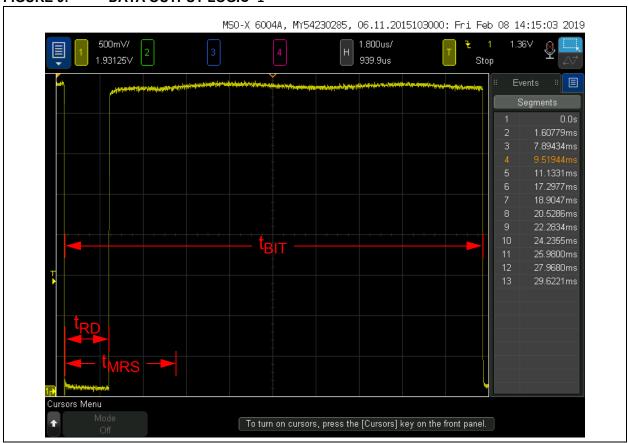
Data Output


A data output bit frame is used when the master is to receive communication back from the slave device. Data output bit frames are used when reading any data out as well as any ACK or NACK responses from the slave device. Just as in the input bit frame, the master initiates the sequence by driving the SI/O line below the V_{IL} threshold which engages the device internal timing generation circuit.

Within the output bit frame is the critical timing parameter t_{RD}, which is defined as the amount of time the master must continue to drive the SI/O line low after crossing the below V_{IL} threshold to request a data bit back from the device. Once the t_{RD} duration has expired, the master must release the SI/O line.

LOGIC '0'

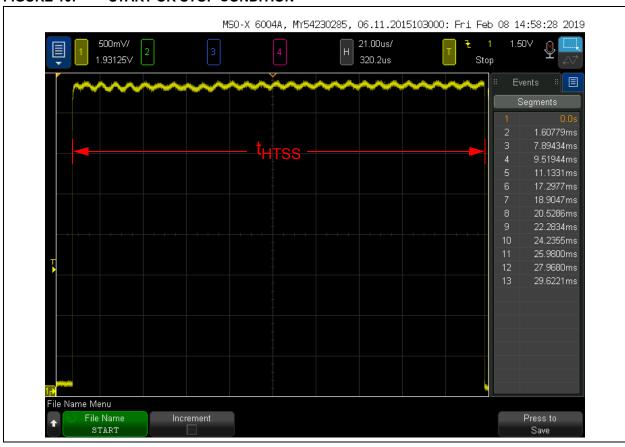
If the slave device is responding with a logic '0' (for either a '0' data bit or an ACK response), it will begin to pull the SI/O line low concurrently during the t_{RD} window and continue to hold it low for a duration of t_{HLD0}, after which it will release the line to be pulled back up to V_{PUP} (see Figure 8). Thus, when the master samples SI/O within the t_{MRS} window, it will see a voltage less than $V_{\text{\scriptsize IL}}$ and decode this event as a logic '0'. By definition, the t_{HLD0} time is longer than t_{MRS} time and therefore, the master is ensured to sample while the slave device is still driving the SI/O line low.



LOGIC '1'

If the slave device intends to respond with a logic '1' (for either a '1' data bit or a NACK response), it will not drive the SI/O line low at all. Once the master releases the SI/O line after the maximum t_{RD} has elapsed, the line will be pulled up to $V_{PUP}.$ Thus, when the master samples the SI/O line within the t_{MRS} window, it will detect a voltage greater than V_{IH} and decode this event as a logic '1'. Figure 9 depicts the logic '1' output bit frame.

FIGURE 9: DATA OUTPUT LOGIC '1'



Start and Stop Conditions

All transactions to the slave device begin with a Start condition; therefore, a Start can only be transmitted by the master to the slave. Likewise, all transactions are terminated with a Stop condition and thus a Stop condition can only be transmitted by the master to the slave.

The Start and Stop conditions require identical biasing of the SI/O line. The Start/Stop condition is created by holding the SI/O line at a voltage of V_{PUP} for a duration of t_{HTSS} . Figure 10 depicts the Start and Stop conditions.

FIGURE 10: START OR STOP CONDITION

AT21CS SERIES OPERATIONS

Device Addressing

Accessing the device requires a Start condition followed by an 8-bit device address word.

The device protocol sequence emulates what would be required for an I²C Serial EEPROM, with the exception that the beginning four bits of the device address are used as an opcode for the different commands and actions that the device can perform.

Since multiple slave devices can reside on the bus, each slave device must have its own unique address so that the master can access each device independently. After the 4-bit opcode, the following three bits of the device address byte are comprised of

the slave address bits. The three slave address bits are pre-programmed prior to shipment and are read-only. Obtaining devices with different slave address bit values is done by purchasing a specific ordering code.

Following the three slave address bits is a Read/Write select bit where a logic '1' indicates a read and a logic '0' indicates a write. Upon the successful comparison of the device address, the EEPROM will return an ACK (logic '0'). If the 4-bit opcode is invalid or the three bits of slave address do not match what is preprogrammed in the device, the device will not respond on the SI/O line and will return to a Standby state. Refer to Figure 11 for an example waveform of the device address byte.

TABLE 1: DEVICE ADDRESS BYTE

4-bit Opcode				Pre-Program	Read/Write		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Refer to Table 2				A2	A1	A0	R/W

AVAILABLE OPCODES

Table 2 outlines available opcodes for the device.

TABLE 2: OPCODES USED BY THE DEVICE

Command	4-bit Opcode	Brief Description of Functionality			
EEPROM Access	1010 (Ah)	Read/Write the contents of the main memory array.			
Security Register Access	1011 (Bh)	Read/Write the contents of the Security register.			
Lock Security Register	0010 (2h)	Permanently lock the contents of the Security register.			
ROM Zone Register Access	0111 (7h)	Inhibit further modification to a zone of the EEPROM array.			
Freeze ROM Zone State	0001 (1h)	Permanently lock the current state of the ROM Zone registers			
Manufacturer ID Read	1100 (Ch)	Query manufacturer and density of device.			
Standard Speed Mode	1101 (Dh)	Switch to Standard Speed mode operation (AT21CS01 only command, the AT21CS11 will NACK this command).			
High-Speed Mode	1110 (Eh)	Switch to High-Speed mode operation (device power-on default. The AT21CS11 will ACK this command).			

MSO-X 6004A, MY54230285, 06.11.2015103000: Fri Feb 08 14:18:21 2019 15.00us/ 500mV/ 1.93125V 495.6us Stop Segments 7.89434ms 18.9047ms 22.2834ms 24.2355ms EEPROM Acc Slave 000b 29.6221ms File Name Menu File Name Press to DA BYTE

FIGURE 11: DEVICE ADDRESS BYTE

Following the device address byte, a memory address byte must be transmitted to the device immediately. The memory address byte contains a 7-bit memory array address to specify which location in the EEPROM to start reading or writing. Refer to Table 3 to review these bit positions.

TABLE 3: MEMORY ADDRESS BYTE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Don't Care	A6	A5	A4	А3	A2	A1	A0

Write Operations

All write operations to the device begin with the master sending a Start condition, followed by a device address byte (opcode Ah for the EEPROM and opcode Bh for the Security register) with the R/W bit set to '0' followed by the memory address byte. Next, the data value(s) to be written to the device are sent. Data values must be sent in 8-bit increments to the device followed by a Stop condition. If a Stop condition is sent somewhere other than at the byte boundary, the current write operation will be aborted. The device allows single byte writes, partial page writes, and full page writes.

To ensure that the address and data sent to the device for writing are not corrupted while any type of internal write operation is in progress, commands sent to the device are blocked from being recognized until the internal operation is completed. If a write interruption occurs (SI/O pulsed low) and is small enough to not deplete the internal power storage, the device will NACK, signaling that the operation is in progress. If an interruption is longer than t_{DSCHG} then internal write operation will be terminated and may result in data corruption. Figure 12 depicts a byte write operation to the main memory array.

Any attempt to interrupt the internal write cycle by driving the SI/O line low may cause the bytes being programmed to be corrupted. Other memory locations within the memory array will not be affected. If the master must interrupt a write operation, the SI/O line must be driven low for tosche

FIGURE 12: BYTE WRITE TO MAIN MEMORY ARRAY

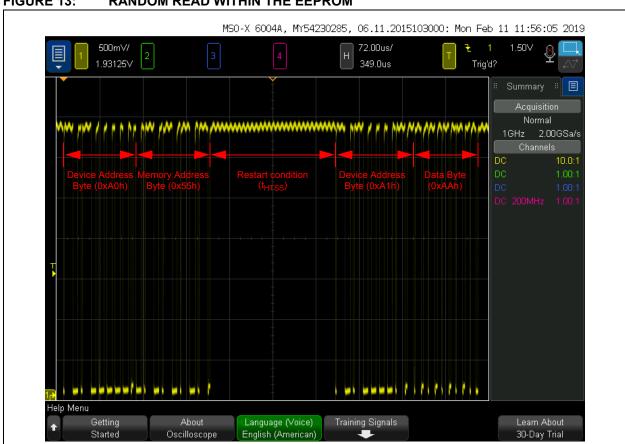
Note:

Read Operations

Read operations are initiated in a similar way as <u>write</u> operations with the exception that the Read/Write select bit in the device address byte must be set to a logic '1'. There are multiple read operations supported by the device:

- · Current Address Read within the EEPROM
- · Random Read within the EEPROM
- · Sequential Read within the EEPROM
- · Read from the Security Register
- · Manufacturer ID Read

The device contains a single, shared-memory Address Pointer that maintains the address of the next byte in the EEPROM or Security register to be accessed. For example, if the last byte read or written was memory location 0Dh of the EEPROM, then the Address Pointer will be pointing to memory location 0Eh of the


EEPROM. As such, when changing from a read in one region to the other, the first read operation in the new region should begin with a random read instead of a current address read to ensure the Address Pointer is set to a known value within the desired region.

If the end of the EEPROM or the Security register is reached, then the Address Pointer will "rollover" to the beginning (address 00h) of that region. The Address Pointer retains its value between operations as long as the pull-up voltage on the SI/O pin is maintained or the device has not been reset. Figure 13 depicts a random read operation within the main memory array.

Note:

If the last operation to the device accessed the Security register, then a random read should be performed to ensure that the Address Pointer is set to a known memory location within the EEPROM.

FIGURE 13: RANDOM READ WITHIN THE EEPROM

CONCLUSION

This application note offers designers a set of firmware routines to access the AT21CS Series Serial EEPROMs using a generic I/O pin on the microcontroller. All routines were written in C using Atmel Studio 7.0. The hardware used in this application note is the Serial Memory Single-Wire Evaluation Kit (DM160232). Details related to single-wire protocol and device operation can be found in the appropriate device data sheet found at www.microchip.com.

APPENDIX A: REVISION HISTORY

Revision A (05/2019)

Initial release of this document.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microepripherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net. PICkit, PICtail, PowerSmart, PureSilicon. QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4549-4

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 **China - Xian** Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820