AN 25.4

UCS1002 Advanced Custom Charging

Author: William Burdette
Microchip Technology

INTRODUCTION

This application note extends application note 24.14 (UCS1002 Fundamentals of Custom Charger Emulation) by presenting two examples of using the UCS1002 Custom charger emulation profile. The first example shows how to analyze portable device behavior and configure the Customer profile to enable charging. The second example shows charger profile optimization.

References

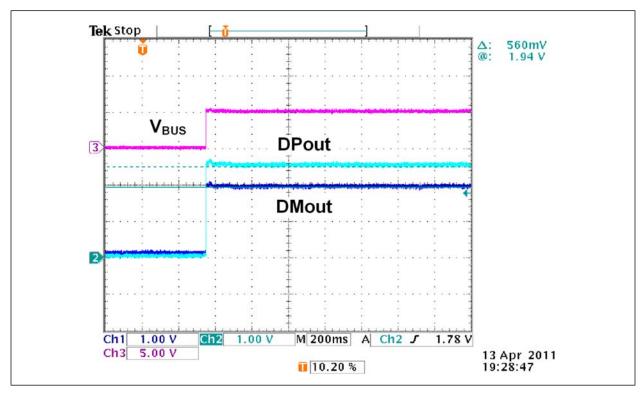
This application note references the following items:

- · UCS1002 Data Sheet
- UCS1002 Schematic Reference Design
- UCS1002 EVB Package
- AN 24.14 UCS1002 Fundamentals of Custom Charger Emulation

Note: It is important to refer to the most recent revision of these items for complete and current information regarding the custom charger emulation capability of the UCS1002 devices.

CREATING A CUSTOM CHARGER EMULATION PROFILE

This first example will create a Custom charger emulation profile that looks like a leading "Brand X" dedicated charger.


Determining Portable Device and Charger Behavior

To create a Custom charger emulation profile, the user must first understand how the portable device interacts with its charger. This information will be used later to configure the profile.

When a Brand X portable device is connected to its dedicated "wall wart" charger, the following occurs (see Figure 1):

- 1. The charger supplies VBUS and applies ~2.7 V to the DPOUT pin and ~2.0 V to the DMOUT pin.
- 2. As soon as VBUS is applied, the portable device samples the voltage on the DPOUT pin and the DMOUT pin.
- 3. If the voltage on the DPOUT and DMOUT pins is greater than some internal threshold (different for each pin), the portable device draws charging current between 200 mA and 300 mA.
- 4. If the voltage on the DPOUT and DMOUT pins is less than this internal threshold (for each pin), the portable device draws current < I_{BUS CHG}.
- 5. However, if the DPOUT and DMOUT pins are shorted together (such as a BC1.2 DCP or YDT1591 charger), the portable device will draw current > I_{BUS_CHG} but will not charge optimally.

FIGURE 1: BRAND X CHARGER UNDER LOAD

Configuring Stimulus / Response Settings

Now that the system is understood, the sections below explain how to select UCS1002 stimulus / response configurations to enable the portable device to charge.

STIMULUS / RESPONSE PAIR #1

For this example, the UCS1002 will need to perform two actions in order to enable charging of the portable device: Apply voltages to the DPOUT and DMOUT pins. However, the Custom charger emulation profile configuration requires that all three of the stimulus / response pairs be configured correctly. Therefore, we'll set the first pair to, in effect, "do nothing" by setting registers 41h through 44h all to 00h. This sets stimulus 1 to VBUS (PRE), response 1 to "remove previous response on DPOUT and DMOUT", and no other controls are used for stimulus / response pair 1.

Table 1 shows a summary of the settings for stimulus #1 and response #1.

TABLE 1: EXAMPLE 1 STIMULUS / RESPONSE PAIR #1 SETTINGS

ADDR	R/W	Register	В7	В6	В5	B4	В3	B2	B1	В0	Default	
41h	R/W	Custom Emula- tion Stimulus 1 -	-	CS1_S1_T D_ TYPE	CS	CS1_S1_TD[2:0]			CS1_STIM1[2:0]			
		Config 1	0	0	0	0	0	0	0	0		
42h	R/W	Custom Emula-		CS1_S1_R1MAG[3:0]				CS1_S1_R1[3:0]				
		tion Stimulus 1 - Config 2	0	0	0	0	0	0	0	0		
43h	R/W	Custom Emula- tion Stimulus 1 -	-	-	CS1 _. PUPI	_S1_ D[1:0]	CS1_S1_TH[3:0]				00h	
		Config 3	0	0	0	0	0	0	0	0		
44h	R/W	Custom Emula-	-	-	-	-	-	CS1_	S1_RATIO	0[2:0]	00h	
	tion Stimulus 1 - Config 4	0	0	0	0	0	0	0	0			

STIMULUS / RESPONSE PAIR #2

Response #2 corresponds to the UCS1002 action to put a voltage on DPOUT. Because the portable device samples the DPOUT pin as soon as VBUS is applied, Response #2 must be applied prior to VBUS and be retained for the duration of the Custom charger emulation profile. This limits the stimulus option to "VBUS (PRE)". This stimulus has the added bonus that the response is not removed and that the next stimulus is checked immediately. Therefore, stimulus #2 = VBUS (PRE). Thus, the CS1_STIM2[2:0] bits should be programmed to 000b (register 45h, bits 2 - 0).

To make sure that response #2 is applied immediately, the timer type should be set to act as a delay and the timer value set to 0 ms. Therefore, the CS1_S2_TD_TYPE bit should be '0' (45h, bit 6) and the CS1_S2_TD[2:0] bits should be 000b (45h, bits 5 - 3).

For the portable device to charge properly, the value on DPOUT needs to be 2.7 V. There are two ways that the UCS1002 may drive the pin to this value, and this will directly affect both the response #2 setting as well as the magnitude setting.

The first way is to command the UCS1002 to directly drive a voltage onto the DPOUT pin. This is done by setting the response #2 settings to "Apply Vdc -> DP" and the magnitude setting to "2.7 V". This voltage is not a robust voltage source and can only sink or source \sim 250 μ A of current.

The second way requires a little more thought on how the system loading will function. This way is to command the UCS1002 to place a resistor divider from VBUS to GND with the center point at the DPOUT pin effectively creating a voltage divider. When this response ("Conn Vdivider -> DP") is selected, the magnitude setting represents the *minimum* impedance of the resistor string from VBUS to GND. To determine the voltage itself, the response #2 ratio setting must also be set to 0.54 (assuming VBUS = 5 V, 0.54 * 5 V = 2.7 V).

Note: Some devices prefer a particular impedance and some impedance selections may work better than others.

APPLICATION NOTE: The stimulus / response ratio controls are only used if the response is to apply a voltage divider on DPOUT or DMOUT. The UCS1002 BC1.2 compliant pre-defined profiles do not use the ratio controls; however, they are used by most of the pre-defined Legacy profiles.

This example will use the second way to better emulate the actual hardware used in a "wall wart" charger. Therefore, response #2 will be "Conn Vdivider -> DP", so the CS1_S2_R2[3:0] bits should be 0110b (46h, bits 3 - 0). The response #2 magnitude will be "125 k Ω ", so the CS1_S2_R2MAG[3:0] bits should be 0010b (46h, bits 7 - 4). Finally, because response #2 is *Connect voltage divider from VBUS to GND with "center" at DPOUT* and the DPOUT voltage needs to be 2.7 V, the response #2 ratio settings will be 0.54, so the CS1_S2_RATIO[2:0] bits should be 100b (47h, bits 2 - 0).

The other configuration controls are not used and should be left at 0's (CS1_S2_PUPD[1:0] and CS1_S2_TH[3:0]). Table 2 shows a summary of the settings for stimulus #2 and response #2.

TABLE 2: EXAMPLE 1 STIMULUS / RESPONSE PAIR #2 SETTINGS

ADDR	R/W	Register	В7	В6	В5	В4	В3	B2	B1	В0	Default
45h	R/W	Custom Emulation Stimulus 2 - Con-	-	CS1_S2_ TD_TYPE	CS1_S2_TD[2:0]			CS.	00h		
		fig 1	0	0	0	0	0	0	0	0	
46h	R/W	Custom Emulation	CS1_S2_R2MAG[3:0]								26h
		Stimulus 2 - Con- fig 2	0	0	1	0	0	1	1	0	
47h	R/W	Custom Emulation Stimulus 2 - Con-	-	-	CS1 PUPI	_S2_ D[1:0]	CS1_S2_TH[3:0]			00h	
		fig 3	0	0	0	0	0	0	0	0	
48h	R/W	Custom Emulation	-	-	-	-	-	CS1_	S2_RATI	O[2:0]	04h
		Stimulus 2 - Con- fig 4	0	0	0	0	0	1	0	0	

STIMULUS / RESPONSE PAIR #3

Response #3 corresponds to the UCS1002 action to put a voltage on DMOUT. Because the portable device also samples the DMOUT pin as soon as VBUS is applied, Response #3 must also be applied prior to VBUS and be retained for the duration of the Custom charger emulation profile. Since response #3 is linked to stimulus #3, stimulus #3 must be the same as stimulus #2 ("VBUS (PRE)"). Thus, the CS1_STIM3[2:0] bits should be programmed to 000b (register 49h, bits 2 - 0).

APPLICATION NOTE: Note that even though these two stimuli are the same, they are not checked simultaneously. Stimulus #1 is always checked before stimulus #2, which is always checked prior to stimulus #3

To make sure that response #3 is applied immediately, the timer type should be set to act as a delay and the timer value set to 0 ms. Therefore, the CS1_S3_TD_TYPE bit should be '0' (49h, bit 6) and the CS1_S3_TD[2:0] bits should be 000b (49h, bits 5 - 3).

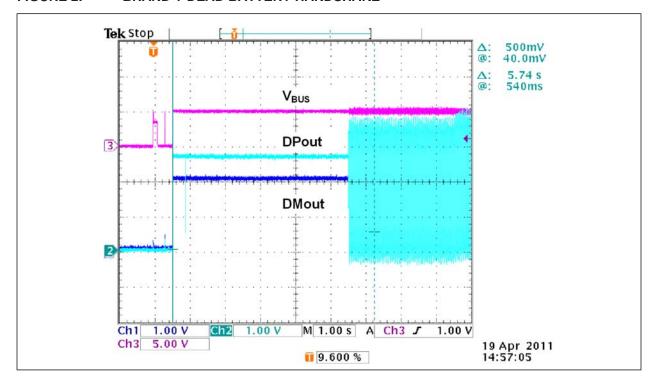
For the portable device to charge properly, the value on DMOUT needs to be 2.0 V. To match response #2 and the implementation of the "wall wart" that the UCS1002 is emulating, response #3 will be "Conn Vdivider -> DM", so the CS1_S3_R3[3:0] bits should be 1001b (4Ah, bits 3 - 0). The response #3 magnitude will be "125 k Ω ", so the CS1_S3_R2MAG[3:0] bits should be 0010b (4Ah, bits 7 - 4). Finally, because response #3 is *Connect voltage divider from VBUS to GND with "center" at DMOUT*, and the DMOUT voltage needs to be 2.0 V, the response #3 ratio settings will be 0.4 (VBUS = 5 V * 0.4 = 2.0 V), so the CS1_S3_RATIO[2:0] bits should be 010b (4Ch, bits 2 - 0).

The other configuration fields are not used and should be left at 0's (CS1_S3_PUPD[1:0] and CS1_S3_TH[3:0]). Table 3 shows a summary of the settings for stimulus #3 and response #3.

TABLE 3: EXAMPLE 1 STIMULUS / RESPONSE PAIR #3 SETTINGS

ADDR	R/W	Register	В7	В6	B5	В4	В3	B2	B1	В0	Default
49h	R/W	Custom Emula- tion Stimulus 3 -	-	CS1_S3_T D_ TYPE	CS1_S3_TD[2:0]			CS.	00h		
		Config 1	0	0	0	0	0	0	0	0	
4Ah	R/W Custom Emula-			CS1_S3_R	3MAG[3:0]	CS1_S3_R3[3:0]				29h
		tion Stimulus 3 - Config 2	0	0	1	0	1	0	0	1	
4Bh	R/W	Custom Emula- tion Stimulus 3 -	-	-	CS1 PUPI	_S3_ D[1:0]		CS1_S3	_TH[3:0]		00h
		Config 3	0	0	0	0	0	0	0	0	
4Ch	R/W	Custom Emula-	-	-	-	-	-	CS1_	S3_RATIO)[2:0]	02h
		tion Stimulus 3 - Config 4	0	0	0	0	0	0	1	0	

CONSIDERING CHARGE LEVEL

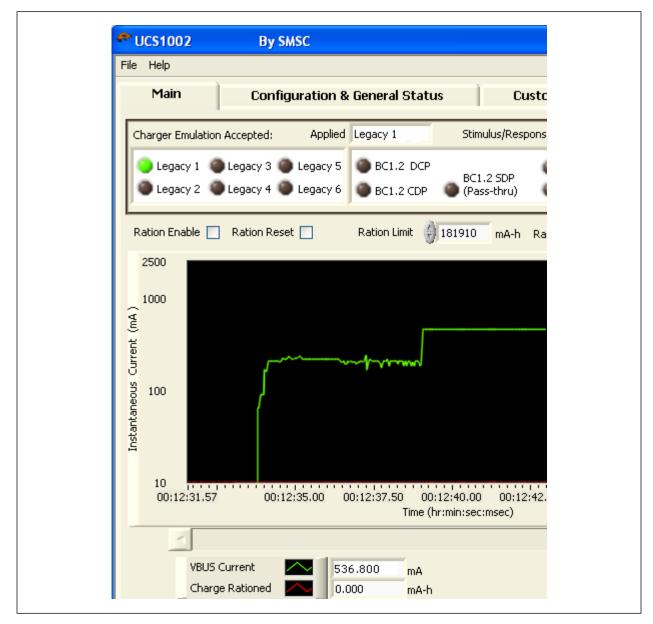

This second example illustrates one method to optimize charging performance of a particular class of portable devices. Some portable devices can use different profiles depending on the level of battery charge when connected.

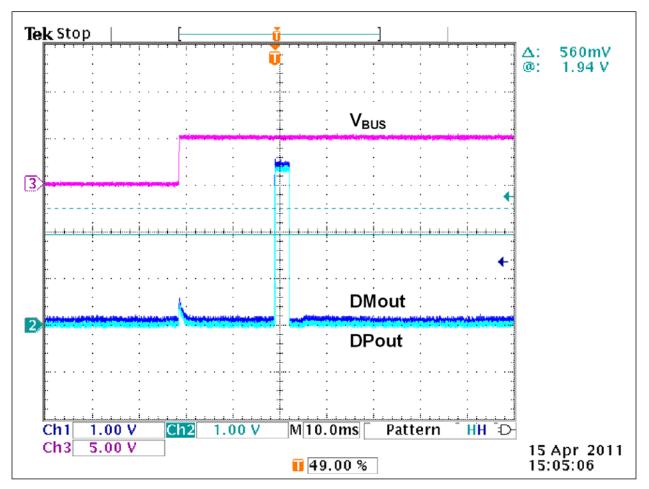
With a dead battery, "Brand Y" portable device can only charge using the Legacy 1 profile. Once the portable device has a very small, but "boot-able" charge, the portable device turns on and boots the operating system (OS). Once this occurs, the "Brand Y" portable device can charge using both Legacy 1 and Legacy 2, although it charges more optimally using Legacy 2.

The battery was completely discharged to begin this example. The first attachment of the Brand Y portable device to the UCS1002 is shown in Figure 2. The following observations may be made:

- 1. Upon power up, the portable device raises DPOUT at V_{BUS}. The resistive divider for Legacy 1 is applied to the pin by the UCS1002, and the voltage at the pin is approximately 2.4 V. The 2.7 V level is not visible at this point because the application of the divider is "pre-VBUS", meaning the transition from unloaded to loaded occurred very quickly and is masked by the 1S/div setting on the oscilloscope.
- 2. This profile does not conform to Legacy 1 perfectly. The Brand Y portable device begins to draw charging current at approximately 250 mA for 15 seconds or so, then the current draw increases to 536 mA or so. The partial EVB GUI control panel in Figure 3 shows this change in current after the profile has locked on Legacy 1.

FIGURE 2: BRAND Y DEAD BATTERY HANDSHAKE




FIGURE 3: EVB GUI PANEL DURING BRAND Y INITIAL CHARGE

Determining Optimal Charging Behavior

Using Legacy 1, the portable device will continue to charge at the 530 mA rate until the battery is fully charged. Experiments were conducted to determine if other profiles resulted in more optimal charging. This was done by disabling a profile and then connecting the Brand Y portable device with enough battery charge to boot the OS. This was repeated for each of the profiles.

When Legacy 1 was disabled to observe responses to the remaining profiles, the Brand Y portable device acknowledged the Legacy 2 handshake, began charging at 530 mA, and then rapidly shifted to a 907 mA charge rate. The handshake is shown in Figure 4 and the corresponding charge plot is shown in Figure 5. Note the small glitch coincident with VBUS application. This glitch indicates the Legacy 2 charger emulation profile "VBUS (PRE)" stimulus and the short between DP and DM response.

FIGURE 4: BRAND Y LEGACY 2 HANDSHAKE

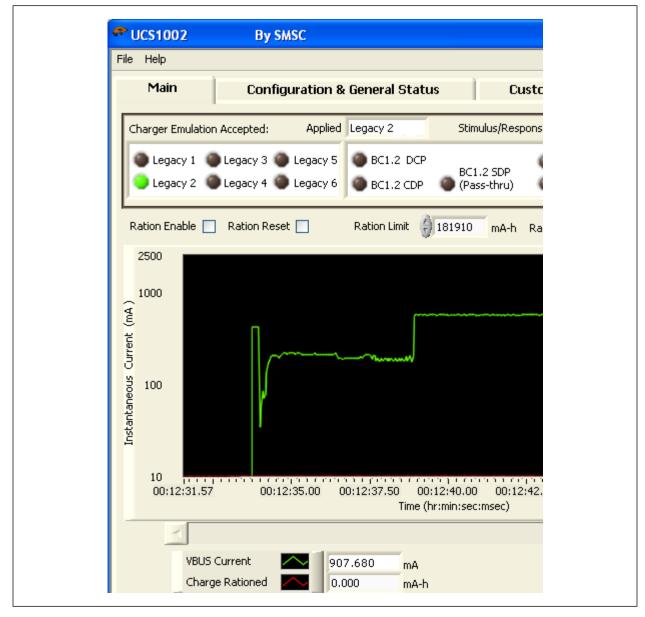
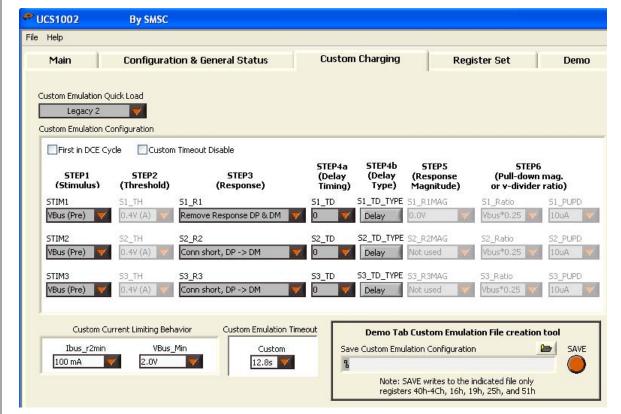


FIGURE 5: BRAND Y LEGACY 2 CHARGING CURRENT

The result is that Legacy 2 produces the most optimal charge (907 mA charge rate) once the Brand Y portable device has enough charge to boot the OS.

Changing the Order of Operation

Since profiles are applied in order, Legacy 1 will be applied before Legacy 2. When the Brand Y portable device has a dead battery, this is fine since it will only charge with Legacy 1. When the portable device has a partially charged battery, it would be better to use Legacy 2; however, Legacy 1 will be used by default.


Since the Brand Y portable device charges more optimally with the Legacy 2 profile, the most straightforward method to resolve this issue is to have Legacy 2 be first to execute in the emulation cycle. To do this, load the Custom charger emulation profile with the Legacy 2 parameters, and select the Custom profile to be the first to execute in the emulation cycle.

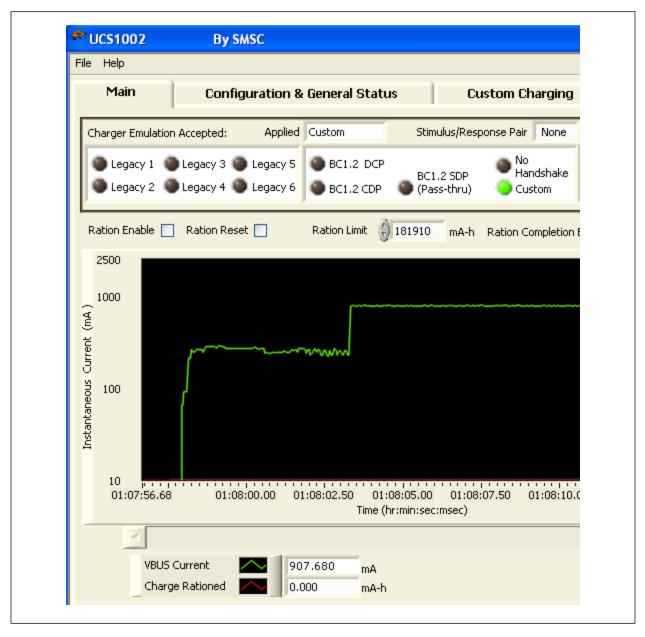
Select Legacy 2 from the Custom Emulation Quick Load drop-down list located on the Custom Charging tab in the EVB GUI panel. This will transfer all register values from the Legacy 2 charger emulation profile to the Custom profile.

Not all configuration bits are used by the Legacy 2 profile. Therefore, the un-used and hard-coded bits are set to 0b by the GUI in order for the Custom charger emulation profile to work properly. The EVB GUI panel shown in Figure 6 shows the result after the transfer and after placing the hard-coded 0's in the appropriate bit locations.

LOADING THE CUSTOM PROFILE FROM LEGACY 2

To ensure the Custom charger emulation profile is used first, set CS1 FIRST (40h, bit 2) to 1b.

Verifying the Results


FIGURE 6:

To test the effectiveness of this modification, connect a Brand Y portable device with a dead battery. The UCS1002 will then try the first emulation profile in the list, which will be the Custom profile configured to match Legacy 2. Because of the dead battery, the handshake will not be successful and the next profile, Legacy 1, will be used. After the handshake, the portable device will start charging.

Once the battery has reached the "bootable charge level" and the OS is running, in order to switch to the more optimal charging rate, the emulation cycle must be re-started. Disable the power switch using the PWR EN control and then enable the power switch. The UCS1002 will then use the first emulation profile in the list, which will be the Custom profile configured to match Legacy 2. The charge rate will be 750 mA.

If the portable device is disconnected and then reconnected, the charging current will range between 750 mA and 900 mA, depending on charge rate, and whether or not the portable device is on and running the OS. The EVB GUI panel in Figure 7 shows the results of this example.

FIGURE 7: BRAND Y CHARGING USING THE CUSTOM PROFILE

APPENDIX A: APPLICATION NOTE REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction				
REV A (08-10-13)	Added the following note to Sti	revious SMSC version, Revision 1.0 (03-09-12). mulus / Response Pair #2 on page 3: "Some devices and some impedance selections may work better				
Rev. 1.0 (03-09-12)	Formal document release					

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, Keeloq, Keeloq, logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation ("SMSC") is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 9781620775226

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869

Fax: 44-118-921-5820

08/20/13