

KSZ8765CLX

Hardware Design Checklist

1.0 INTRODUCTION

This document provides a hardware design checklist for the Microchip KSZ8765CLX five-port Ethernet switch, which has two 100Base-FX fiber ports (Port 1 and port 2), two 10/100Base-T/TX copper ports (Ports 3 and Port 4), and one uplink port (Port 5). The uplink Port 5 supports GMII/RGMII/MII/ RMII™ configurable interface. These checklist items should be followed when utilizing the KSZ8765CLX in a new design. A summary of these items is provided in Section 12.0, "Hardware Checklist Summary". Detailed information on these subjects can be found in the corresponding sections:

- · Section 2.0, "General Considerations"
- Section 3.0, "Power"
- · Section 4.0, "Ethernet Signals"
- Section 5.0, "Clock Circuit"
- · Section 6.0, "Configuration for System Application"
- · Section 7.0, "Digital Interface"
- · Section 8.0, "Management Interface"
- · Section 9.0, "Startup"
- Section 10.0, "Configuration Pins (Strapping Options)"
- · Section 11.0, "Miscellaneous"

2.0 GENERAL CONSIDERATIONS

2.1 Required References

The KSZ8765CLX implementor should have the following documents on hand:

- KSZ8765CLX Integrated 5-Port 10/100-Managed Ethernet Switch with Gigabit GMII/RGMII and MII/ RMII Interfaces Data Sheet
- KSZ8765CLX DP V1.0.zip for the KSZ8765CLX Design Package
- Application Note 8.13 Suggested Magnetics

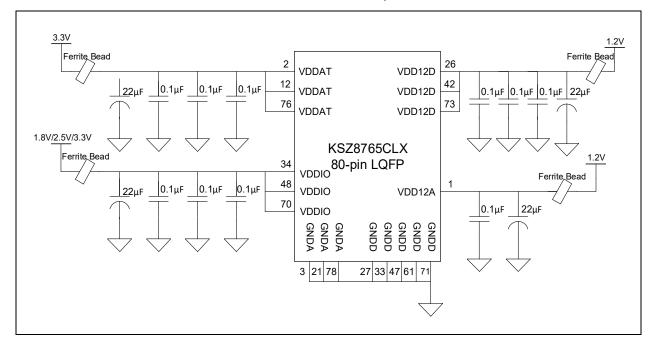
2.2 Pin Check

Check the pinout of the part against the data sheet. Ensure that all pins match the data sheet and are configured as inputs, outputs, or bidirectional for error checking.

2.3 Ground

- GNDD is the digital ground, while the ground pin GNDA is the analog ground. Both GNDD and GNDA grounds should be connected to the solid contiguous ground plane as a system ground on the board. Separate digital ground and analog ground planes are not recommended.
- If using the magnetics and RJ45 connector, a chassis ground should be used for the line side of the magnetics
 and the metal case of the RJ45 connector. The system ground and the chassis ground should be tied together by
 a ferrite bead. The ferrite bead should be placed far away from the Ethernet device for better ESD and EMI.

3.0 POWER

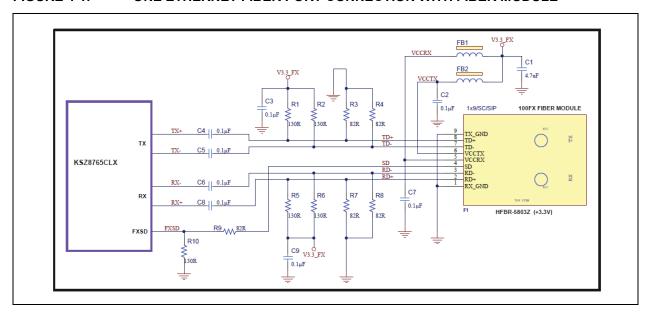

- The analog supply (VDDAT33) pins on the KSZ8765CLX are 2, 12, and 76. They require connections to VDDAT33 (created from +3.3V through a ferrite bead).
- KSZ8765CLX VDDIO supports three VDDIO voltages—1.8V, 2.5V, and 3.3V. Pins 34, 48, and 70 (VDDIO) should
 be connected to one of the three VDDIO voltages through a ferrite bead.

KSZ8765CLX

- The analog 1.2V core power pin is pin 1, while the digital 1.2V core power pins are pins 26, 42, and 73. Both analog 1.2V and digital 1.2V need a ferrite bead from the 1.2V power rail.
- Be sure to place 4.7 μ F to 22 μ F bulk capacitors on each side of the ferrite beads. In addition, make sure to use 0.1 μ F capacitors to decouple the device for all power pins. The decoupling capacitor size should be SMD_0603 or smaller.

The power and ground connections are shown in Figure 3-1.

FIGURE 3-1: POWER AND GROUND CONNECTIONS, INTERNAL REGULATION

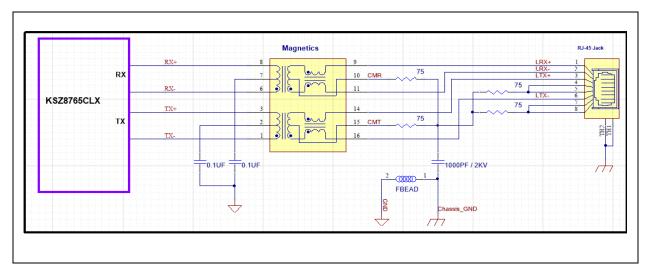

4.0 ETHERNET SIGNALS

The KSZ8765CLX has four integrated PHYs that support 10/100Base-T/TX Ethernet copper ports and 100Base-FX fiber ports. These PHYs are fully compliant with the IEEE 802.3u standard.

4.1 KSZ8765CLX Fiber Port Connection

 The KSZ8765CLX has two Ethernet copper ports for Port 1 and Port 2. Both ports are voltage drivers with internal DC biasing and on-chip termination, so there are no external termination resistors and DC biasing power on the chip side. Each port connection between KSZ8765CLX and a 3.3V fiber module is illustrated in Figure 4-1.

FIGURE 4-1: ONE ETHERNET FIBER PORT CONNECTION WITH FIBER MODULE


- The FXSD1 (pin 75) pin is the Port 1 fiber port signal detect pin. It requires a 82Ω and a 130Ω resistor divider (See Figure 4-1.) and connect to the SD pin of the 100-FX fiber module through the resistor divider.
- RXP1 (pin 4): This pin is the receive differential pair input positive connection for Port 1. This pin also connects to the receive channel of the 100-FX fiber module through a 0.1 μF capacitor.
- RXM1 (pin 5): This pin is the receive differential pair input negative connection for Port 1. This pin also connects to the receive channel of the 100-FX fiber module through a 0.1 μF capacitor.
- TXP1 (pin 6): This pin is the transmit differential pair output positive connection for Port 1. This pin also connects to the transmit channel of the 100-FX fiber module through a 0.1 µF capacitor.
- TXM1 (pin 7): This pin is the transmit differential pair output negative connection for Port 1. This pin also connects to the transmit channel of the 100-FX fiber module through a 0.1 µF capacitor.
- The FXSD2 (pin 74) pin is the Port 2 fiber port signal detect pin. It requires a 82Ω and a 130Ω resistor divider (See Figure 4-1.) and connect to the SD pin of the 100-FX fiber module through the resistor divider.
- RXP2 (pin 8): This pin is the receive differential pair input positive connection for Port 2. This pin also connects to the receive channel of the 100-FX fiber module through a 0.1 μF capacitor.
- RXM2 (pin 9): This pin is the receive differential pair input negative connection for Port 2. This pin also connects to the receive channel of the 100-FX fiber module through a 0.1 μF capacitor.
- TXP2 (pin 10): This pin is the transmit differential pair output positive connection for Port 2. This pin also connects to the transmit channel of the 100-FX fiber module through a 0.1 µF capacitor.
- TXM2 (pin 11): This pin is the transmit differential pair output negative connection for Port 2. This pin also connects to the transmit channel of the 100-FX fiber module through a 0.1 μF capacitor.
- For unused Ethernet port, the user may leave the RX pair and the TX pair floating because the KSZ8765CLX analog ports have internal termination.

Note: For the fiber Port 1 and Port 2 settings, users should set each of them to force 100/Full-Duplex mode. Users may set the port register control 9 bit [7] = 1 to disable Auto-Negotiation and set bit [5] = 1 for Full-duplex mode.

4.2 KSZ8765CLX Copper Port Connection

 The KSZ8765CLX has two Ethernet copper ports for Port 3 and Port 4. All ports are voltage drivers with internal DC biasing and on-chip termination, so there are no external termination resistors and DC biasing power on the magnetics. Each port connection between KSZ8765CLX and magnetics is illustrated in Figure 4-2.

FIGURE 4-2: ONE ETHERNET COPPER PORT CONNECTION WITH MAGNETICS

- Both center taps, RX and TX, of the magnetics on Port 3 of the chip side should be separately connected to ground with two capacitors.
- RXP3 (pin 13): This pin is the receive differential pair input positive connection for Port 3. This pin should be connected to RJ45 connector pin 1 through magnetics.
- RXM3 (pin 14): This pin is the receive differential pair input negative connection for Port 3. This pin should be connected to RJ45 connector pin 2 through magnetics.
- TXP3 (pin 6): This pin is the transmit differential pair output positive connection for Port 3. This pin should be connected to RJ45 connector pin 3 through magnetics.
- TXM3 (pin 7): This pin is the transmit differential pair output negative connection for Port 3. This pin should be connected to RJ45 connector pin 6 through magnetics.
- Both center taps, RX and TX, of the magnetics on the Port 4 of the chip side should be separately connected to ground with two capacitors.
- RXP4 (pin 17): This pin is the receive differential pair input positive connection for Port 4. This pin should be connected to RJ45 connector pin 1 through magnetics.
- RXM4 (pin 18): This pin is the receive differential pair input negative connection for Port 4. This pin should be connected to RJ45 connector pin 2 through magnetics.
- TXP4 (pin 19): This pin is the transmit differential pair output positive connection for Port 4. This pin should be connected to RJ45 connector pin 3 through magnetics.
- TXM4 (pin 20): This pin is the transmit differential pair output negative connection for Port 4. This pin should be connected to RJ45 connector pin 6 through magnetics.
- For unused Ethernet port, the user may leave the RX pair and the TX pair floating because the KSZ8765CLX analog ports have internal termination.

4.3 Magnetics Connection at the Chip Side

- The center tap connection on the KSZ8765CLX side for the transmit channel should not be connected to VDDAT. The transmit channel center tap of the magnetics should connect to system ground through Common-mode capacitor only. The Common-mode capacitor value can be from 0.1 µF to 10 µF.
- The center tap connection on the KSZ8765CLX side for the receive channel should not be connected to VDDAT.
 The receive channel center tap of the magnetics should connect to system ground through Common-mode capacitor only. The Common-mode capacitor value can be from 0.1 μF to 10 μF.
- When using the KSZ8765CLX switch in the Auto MDIX mode of operation, the use of an Auto MDIX style magnetics module is required. Please refer to the Application Note 8.13 Suggested Magnetics for detailed information on proper magnetics.

4.4 Magnetics Connection at Line Side of the RJ45 Connector

- In the switch design, pin 1 of the RJ45 should connect to RX+ of the KSZ8765CLX, while pin 2 of the RJ45 should connect to RX- of the device.
- In the switch design, pin 3 of the RJ45 should connect to TX+ of the KSZ8765CLX, while pin 6 of the RJ45 should connect to TX- of the KSZ8765CLX.
- The center tap connection on the cable side (the RJ45 side) for the transmit channel should be terminated with a 75Ω resistor through a 1000 pF, 2 kV capacitor to chassis ground.
- The center tap connection on the cable side (the RJ45 side) for the receive channel should be terminated with a 75Ω resistor through a 1000 pF, 2 kV capacitor to chassis ground.
- RJ45 pins 4 and 5 should be shorted and then terminated with a 75Ω resistor through the 1000 pF to the chassis ground.
- RJ45 pins 7 and 8 should be shorted and then terminated with a 75Ω resistor through the 1000 pF to the chassis ground.
- Only one 1000 pF, 2 kV capacitor to chassis ground is required. The capacitor is shared by both TX and RX center taps.
- The RJ45 connector shield should be tied directly to the chassis ground.
- The center tap connection on the cable side (the RJ45 side) for the receive channel should be terminated with a 75Ω resistor through a 1000 pF, 2 kV capacitor to chassis ground.
- RJ45 pins 4 and 5 should be shorted and then terminated with a 75Ω resistor through the 1000 pF to the chassis ground.
- RJ45 pins 7 and 8 should be shorted and then terminated with a 75Ω resistor through the 1000 pF to the chassis ground.
- Only one 1000 pF, 2 kV capacitor to chassis ground is required. The capacitor is shared by both TX and RX center taps.
- The RJ45 connector shield should be tied directly to the chassis ground.

4.5 Alternative Termination Selection for RJ45 Connector

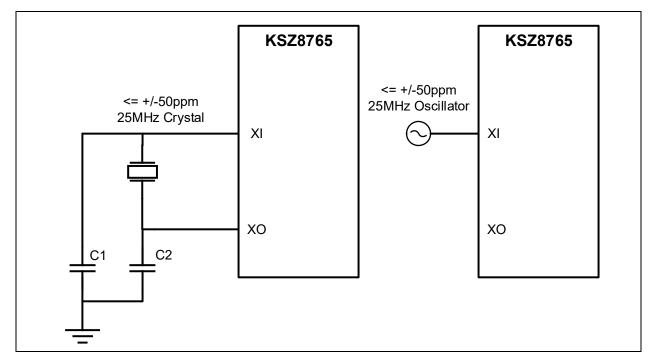
- Pins 4 and 5 of the RJ45 connector interfaces to one pair of unused wires in CAT-5 type cables. These should be terminated to chassis ground through a 1000 pF, 2 kV capacitor. This can be done in two ways:
 - 1. Pins 4 and 5 can be connected to two 49.9Ω resistors. The common connection of these resistors should be linked through a third 49.9Ω resistor to the 1000 pF, 2kV capacitor.
 - 2. For a lower component count, the resistors can be combined. The two 49.9Ω resistors in parallel perform like a 25Ω resistor. The 25Ω resistor in series with the 49.9Ω resistor causes the entire circuit to function as a 75Ω resistor. An equivalent circuit is created by shorting pins 4 and 5 together on the RJ45 and terminating them with a 75Ω resistor in series with the 1000 pF, 2 kV capacitor to chassis ground.
- Pins 7 and 8 of the RJ45 connector interfaces to one pair of unused wires in CAT-5 type cables. These should be terminated to chassis ground through a 1000 pF, 2kV capacitor. This can be done in two ways:
 - 1. Pins 7 and 8 can be connected to two 49.9? resistors. The common connection of these resistors should be linked through a third 49.9Ω resistor to the 1000 pF, 2 kV capacitor.
 - 2. For a lower component count, the resistors can be combined. The two 49.9Ω resistors in parallel perform like a 25Ω resistor. The 25Ω resistor in series with the 49.9Ω resistor causes the entire circuit to function as a 75Ω resistor. An equivalent circuit is created by shorting pins 4 and 5 together on the RJ45 and terminating them with a 75Ω resistor in series with the 1000 pF, 2 kV capacitor to chassis ground.

KSZ8765CLX

- Only one 1000 pF, 2 kV capacitor to chassis ground is required. It is shared by both 4 and 5 termination pins as well as pins 7 and 8 termination pins.
- The RJ45 connector shield should be attached directly to the chassis ground.

4.6 Using RJ45 with Integrated LED

- The user can utilize the RJ45 connector with integrated LED components if the product working environment is not very noisy.
- If the designed product works in an electrically noisy external environment, it is not advisable to use RJ45 with integrated LED. This is because the outside interference signal or voltage could be coupled to the LED circuit through the line side of RJ45 as the LED circuit is directly connected to chip and system power or ground. It is better to use independent LED components.
- If the user needs to use the RJ45 with an integrated LED circuit in a noisy environment, consider adding TVS diodes to protect the chip.

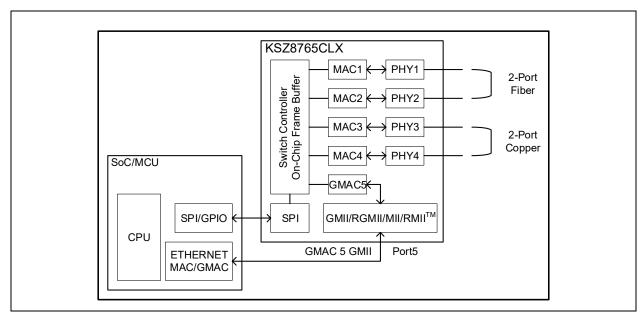

5.0 CLOCK CIRCUIT

5.1 Crystal and External Oscillator or Clock Connections

A 24.000 MHz (±500 ppm) crystal should be used to provide the clock source. For the complete crystal specifications and tolerances, refer to the *KSZ8765CLX Data Sheet*.

- XI (pin 79) is the clock circuit input for the KSZ8765CLX. This pin requires a capacitor to ground directly when a crystal is used. One side of the crystal connects to this pin.
- XO (pin 80) is the clock circuit output from the KSZ8765CLX. When a crystal is used, this pin connects to one side of the crystal pin that requires a capacitor to ground.
- Since every system design is unique, the capacitor values are system-dependent, based on the C_L specifications
 of the crystal and the stray capacitance value. The PCB design, crystal, and layout all contribute to the characteristics of this circuit.
- Alternatively, a 25.000 MHz clock oscillator may be used to provide the clock source for the KSZ8765CLX. When using a single-ended clock source, XI (pin 79) connects to a 3.3V tolerant oscillator. XO (pin 80) should be left floating as No Connect (NC). See Figure 5-1.
- An external 1 $M\Omega$ resistor between XI and XO pin is unnecessary because the KSZ8765CLX already has this resistor.
- The use of a crystal or oscillator with a minimum drive level of 50 μW (300 μW typical) is recommended. A higher drive level is much preferable.

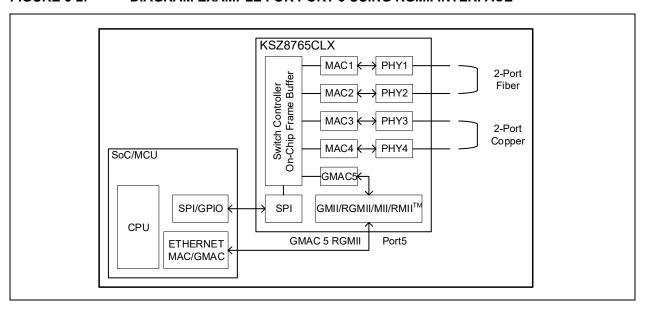
FIGURE 5-1: CRYSTAL AND OSCILLATOR CONNECTIONS


6.0 CONFIGURATION FOR SYSTEM APPLICATION

• The KSZ8765CLX applications come in four design categories.

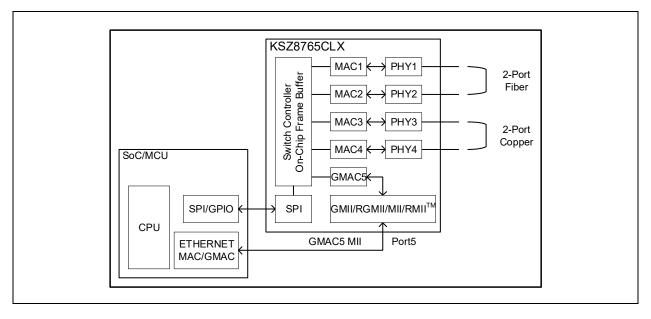
6.1 Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 GMII

- Set strap pins LED3[1:0] = 10 for Port 5 GMAC5 to GMII. KSZ8765CLX GMII supports 1000Base-TX mode only.
- Use SPI interface that can access all registers for a managed switch. (See Figure 6-1.)


FIGURE 6-1: DIAGRAM EXAMPLE FOR PORT 5 USING GMII INTERFACE

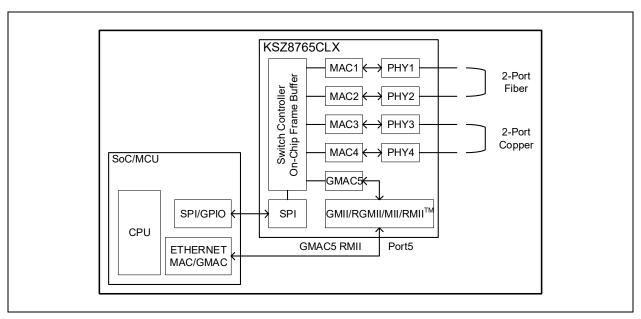
6.2 Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 RGMII

- Set strap pins LED3[1:0] = 11 (default value) for Port 5 GMAC5 to RGMII. KSZ8765CLX RGMII supports 10/100/ 1000Base-T/TX mode.
- Use SPI interface that can access all register for a managed switch. (See Figure 6-2.)


FIGURE 6-2: DIAGRAM EXAMPLE FOR PORT 5 USING RGMII INTERFACE

6.3 Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 MII

- Set strap pins LED3[1:0] = 00 (use two pull-down resistors) for Port 5 GMAC5 to MII. KSZ8765CLX MII supports 10/100Base-T/TX mode.
- Use SPI interface that can access all registers for a managed switch. See Figure 6-3.


FIGURE 6-3: DIAGRAM EXAMPLE FOR PORT 5 USING MII INTERFACE

6.4 Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 RMII™

- Set strap pins LED3[1:0] = 01 (use one pull-down resistor). LED1_1 can be either pull-up or pull-down for Port 5 GMAC5 to RMII™. KSZ8765CLX RMII supports 10/100Base-T/TX mode.
- Use SPI interface that can access all registers for a managed switch. See Figure 6-4.

FIGURE 6-4: DIAGRAM EXAMPLE FOR PORT 5 USING RMII™ INTERFACE

7.0 DIGITAL INTERFACE

7.1 Port 5 GMAC5 SW5-GMII/RGMII/MII/RMII™ Strap Pins for Configuration

 The KSZ8765CLX provides one uplink port, which is Port 5. The uplink Port 5 can be configured to GMII, RGMII, MII, and RMII™ with different modes through the strap pins [24,25], LED3 [1,0], other strap pins, and register. For detailed configurations, refer to Table 7-1.

TABLE 7-1: PORT 5 GMAC5 INTERFACE CONFIGURATIONS

Port 5 GMAC5 Interface Modes	Strap Pin LED3 [1,0] Pull-Up = 1, Pull-Down = 0	Other Related Strap Pins Pull-Up = 1, Pull-Down = 0	Other Related Strap Pins Pull-Up = 1, Pull-Down = 0
MII	00	LED2_1=1 by default, MII MAC mode	LED2_1=0, MII PHY mode
RMII™	01	LED2_1=1 by default, RMII Clock mode (provide 50 MHz)	LED2_1=0, RMII Normal mode (Receive 50 MHz) Device clock source options: LED1_1=1 by default. The switch clock source comes from the local 25 MHz clock. LED1_1=0, the switch clock source comes from the TXC5/ REFCLKI5 external clock.
GMII	10	LED2_1=1 by default, GMII GMAC mode	LED2_1=0, GMII GPHY mode
RGMII	11 (default)	LED1_0=1 by default, RGMII Gbps Speed mode	LED1_0=0 by default, RGMII 10/100 Mbps Speed mode

7.2 Port 5 GMAC5 MII Interface

The KSZ8765CLX provides MAC layer interface for GMAC5. The MII interface contains two distinct groups of signals: one for transmission and one for receiving.

- Refer to Table 7-1 for the detailed configuration of the MAC mode and PHY mode of the Port 5 GMAC5 SW5-MII. The KSZ8765CLX MAC5 MII default is MII MAC mode.
- For uplink Port 5 GMAC5 MII, set 10 Mbps and 100 Mbps data rates through register 0x06 bit 4. The default speed is 100 Mbps. Set Half-Duplex mode and Full-Duplex mode through register 0x06 bit 6. The default Duplex mode is Full-Duplex.
- The other-end MII should have the same speed and Duplex mode settings with KSZ8765CLX Port 5 MII for consistency.
- The KSZ8765CLX Port 5 GMAC5 MII MAC mode and GMAC5 MII PHY mode connections are shown in Figure 7-1 and Figure 7-2.

FIGURE 7-1: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC5 MII MAC MODE AND EXTERNAL PHY

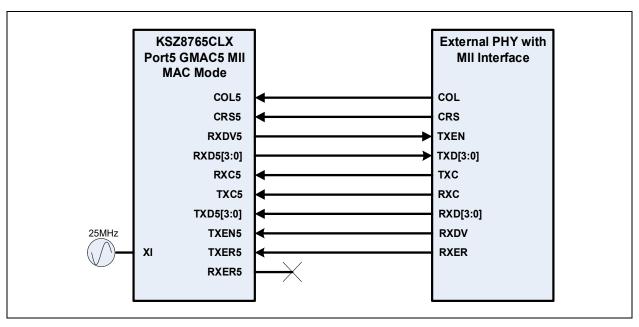
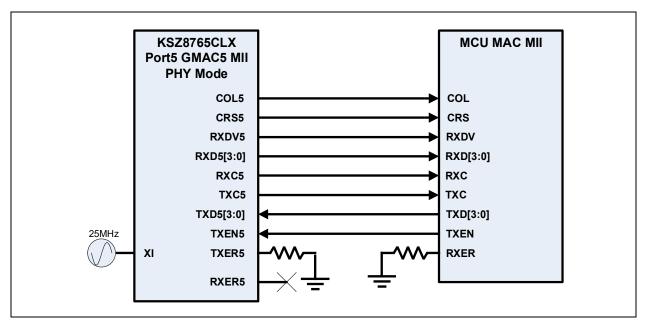



FIGURE 7-2: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC5 MII PHY MODE AND MCU

7.3 Port 5 GMAC5 RMII™ Interface

- Table 7-1 shows the detailed configuration of the RMII™ Clock mode and RMII Normal mode of Port 5 GMAC5 SW5-RMII. Based on the diagram, the RMII Clock mode provides a 50 MHz RMII reference clock, while the RMII Normal mode receives a 50 MHz RMII reference clock.
- For uplink Port 5 GMAC5 RMII, set 10 Mbps and 100 Mbps data rates through register 0x06 bit 4. The default speed is 100 Mbps. Set Half-Duplex mode and Full-Duplex mode through register 0x06 bit 6. The default Duplex mode is Full-Duplex. The strap pins [24:25] and LED3 [1:0] should be set to 01.
- The KSZ8765CLX Port 5 RMII and the MCU RMII interface must be configured to the same speed and duplex.
- MAC RMII does not produce any error, so there are no error output pins from GMAC5 RMII. The corresponding input pin on the other end can be pulled down by a pull-down resistor.
- The KSZ8765CLX Port 5 GMAC5 RMII Clock mode (output 50 MHz reference clock) and RMII Normal mode (input 50 MHz reference clock) are shown in Figure 7-3 and Figure 7-4, respectively.

7.3.1 PORT 5 GMAC5 RMII™ CLOCK MODE

- The KSZ8765CLX Port 5 GMAC5 can be set to RMII Clock mode by the strap-in pins. See Table 7-1.
- The other side can be an MCU MAC on RMII Normal mode or an external PHY on RMII Normal mode. The connections are illustrated in Figure 7-3, Figure 7-4, Figure 7-5, and Figure 7-6.

FIGURE 7-3: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC5 RMII™ CLOCK MODE AND MCU MAC RMII REFCLK INPUT MODE

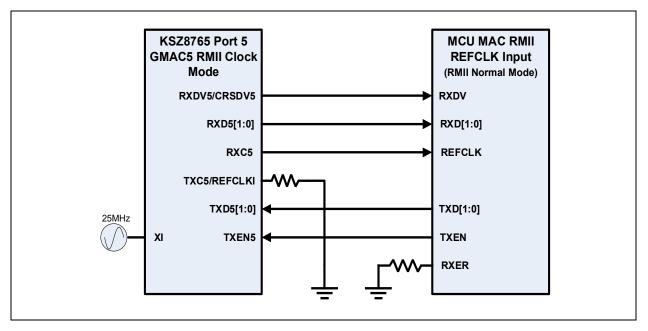
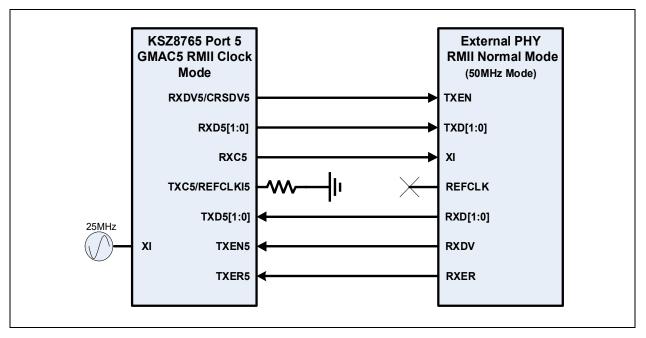
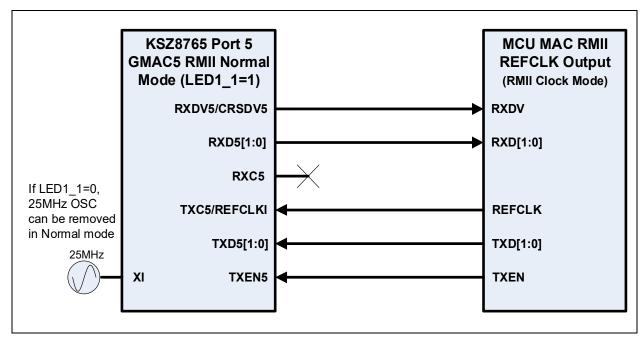
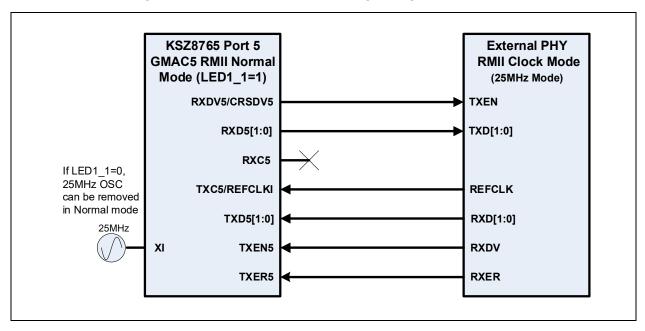



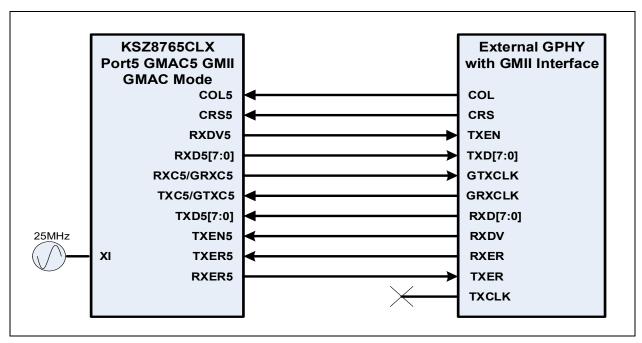
FIGURE 7-4: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC5 RMII™ CLOCK MODE AND EXTERNAL PHY RMII NORMAL MODE

7.3.2 PORT 5 MAC5 RMII™ NORMAL MODE

- The KSZ8765CLX Port 5 GMAC5 can be set to RMII™ Normal mode by LED2_1 strap pin by a pull-down resistor. In Port 5 GMAC5 RMII Normal mode, the KSZ8765CLX's clock source comes from either 25 MHz crystal/oscillator XI pin (Strap pin LED1_1=1) or TXC5/REFCLKI pin (Strap pin LED1_1=0).
- The other side can be an MCU MAC on RMII Clock mode or an external PHY on RMII Clock mode. The connections are shown in Figure 7-5 and Figure 7-6, respectively.

FIGURE 7-5: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC5 RMII™ NORMAL MODE AND MCU MAC RMII REFCLK OUTPUT MODE

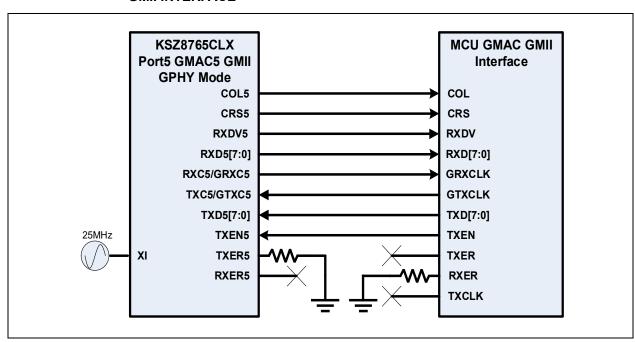



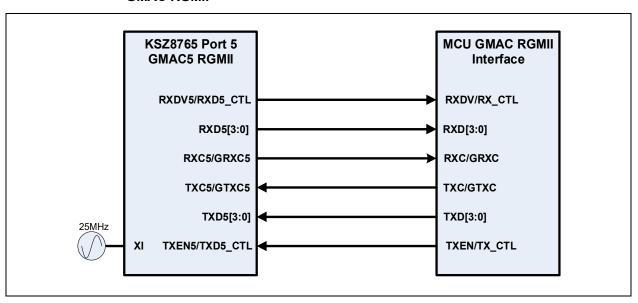

FIGURE 7-6: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC5 RMII™ NORMAL MODE AND EXTERNAL PHY RMII CLOCK MODE

7.4 Port 5 GMAC5 GMII Interface

- The KSZ8765CLX provides MAC layer interface for GMAC5. The GMII interface contains two distinct groups of signals: one for transmission and one for receiving. The KSZ8765CLX Port 5 GMAC5 GMII GMAC mode and GMAC5 GMII GPHY mode connections are shown in Figure 7-7 and Figure 7-8, respectively.
- Refer to Table 7-1 for the detailed configuration of the GMAC mode and GPHY mode of Port 5 GMAC5 SW5-GMII. The default mode is SW5-MII GMAC.
- KSZ8765CLX GMII supports 1000 Mb/s and Full-Duplex operation only.
- MCU GMAC GMII should have the same speed and duplex setting as the KSZ8765CLX GMII interface.

FIGURE 7-7: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMII GMAC MODE AND EXTERNAL GPHY GMII INTERFACE




FIGURE 7-8: CONNECTIONS BETWEEN PORT 5 GMAC5 GMII GPHY MODE AND MCU GMAC GMII INTERFACE

7.5 Port 5 GMAC5 RGMII Interface

The KSZ8765CLX provides GMAC layer RGMII interface for GMAC5. The RGMII interface contains two distinct groups of signals: one for transmission and one for receiving. The KSZ8765CLX Port 5 GMAC5 RGMII connections with MCU RGMII and GPHY RGMII are shown in Figure 7-9 and Figure 7-10, respectively.

- Please see the Table 7-1 for the detailed configuration of the Port 5 GMAC5 SW5-RGMII.
- KSZ8765CLX RGMII supports 10/100/1000 Mbps. LED1_0=0 pull-down is 10/100 mode in RGMII, set register 0x06 bit [4] for 10/100 speed, and set bit [6] for Full-Duplex or Half-Duplex mode. LED1_0=1 in default is 1000 Mbps mode, and it only supports Full-Duplex in the Gigabit mode.
- MCU GMAC RGMII should have the same speed and duplex setting as the KSZ8765CLX RGMII interface.

FIGURE 7-9: CONNECTIONS BETWEEN KSZ8765CLX PORT 5 GMAC 5 RGMII AND MCU GMAC RGMII

KSZ8765 Port 5 External GPHY GMAC5 RGMII RGMII Interface RXDV5/RXD5_CTL TXEN/TX_CTL RXD5[3:0] TXD[3:0] RXC5/GRXC5 TXC/GTX CLK TXC5/GTXC5 RXC/GRX_CLK TXD5[3:0] RXD[3:0] 25MHz ΧI TXEN5/TXD5_CTL RXDV/RX_CTL

FIGURE 7-10: CONNECTIONS BETWEEN PORT 5 GMAC5 RGMII AND A GPHY RGMIII

7.6 System Consideration for Design with RGMII Interface

- The KSZ8765CLX supports RGMII V2.0 specifications. The RGMII interface need to meet Ingress Internal Delay (RGMII-IID) and Egress Internal Delay (RGMII-EID) specifications. In most cases, setting the KSZ8765CLX RGMII ID is required based on the other end-RMII-ID to meet the RGMII V2.0 specifications. Note that using the SPI interface is the only way to set RGMII-ID. The KSZ8765CLX RGMII-ID setting principles are detailed in Table 7-2.
- KSZ8765CLX RGMII register setting is based on the other end RGMII clock input/output clock delay and RGMII traces routing with equal length for two distinct groups of signals in PCB layout

TABLE 7-2: PORT 5 GMAC5 RGMII REGISTER CONFIGURATION

KSZ8765CLX Register 86 Bits [4:3] Configuration	Register 86 Bits [4:3] Clock		KSZ8765CLX RGMII Clock Delay/ Slew Configuration	Other End RGMII Clock Configuration	
Dit [4:0] = 44	Ingress Clock Input	Bit [4] = 1	Delay	No Delay	
Bit [4:3] = 11	Egress Clock Output	Bit [3] = 1	Delay	No Delay	
Dit [4:2] - 10	Ingress Clock Input	Bit [4] = 1	Delay	No Delay	
Bit [4:3] = 10	Egress Clock Output	Bit [3] = 0	No Delay	Delay	
D:+ [4:2] = 04	Ingress Clock Input	Bit [4] = 0 (default)	No Delay	Delay	
Bit [4:3] = 01	Egress Clock Output	Bit [3] = 1 (default)	Delay	No Delay	
Bit [4:3] = 00 Ingress Clock Input		Bit [4] = 0	No Delay	Delay	

7.7 GMII/RGMII/MII/RMII™ Interface Series Terminations

• Provisions should be made for series resistors for all outputs on the MII/RMII™ interface. Series resistors will enable the designer to closely match the output driver impedance of the KSZ8765CLX and PCB trace impedance to minimize ringing on these signals. Exact resistor values are application dependent and must be analyzed insystem. The recommended starting point for the value of these series resistors is 22Ω. See Table 7-3.

TABLE 7-3: SERIES TERMINATIONS FOR MII/RMII™ INTERFACE

Signals for Port5 GMAC5 GMII/ RGMII/MII/RMII	Series Resistors at KSZ8765CLX GMII/RGMII/MII/RMII Drive Pins	Series Resistors at the other end GMII/RGMII/MII/RMII Drive Pins	
RXD5 [7:0] / RXD5 [3:0] / RXD5 [1:0]	22Ω	_	
RXDV5 / CRSDV5/RXD5_CTL	22Ω	_	
RXC5/GRXC5	22Ω in GMAC5 MII PHY mode, RMII Clock Mode and GMII/RGMII	22Ω when KSZ8765CLX GMAC5 is set to MII MAC mode.	
TXC5/REFCLKI5/GTXC5	22Ω in GMAC5 MII PHY mode	22Ω when KSZ8765CLX GMAC5 is set to MII MAC mode, RMII Normal mode and GMII/RGMII mode.	
TXEN/TXD5_CTL	_	22Ω	
TXD5 [7:0] / TXD5 [3:0] / TXD5 [1:0]	_	22Ω	

Note 1: The series resistors should be placed as close as possible to both KSZ8765CLX RMII drive pins and the other end drive pins in PCB layout.

^{2:} The unused pins of the Port 5 GMAC5 interfaces should be unconnected except unused I/O pin without internal pull-up or pull-down.

8.0 MANAGEMENT INTERFACE

8.1 Configuration for Management Interface Mode

- KSZ8765CLX supports SPI Client mode and MIIM-MDC/MDIO mode for register access. SPI mode can configure all registers, while MIIM-MDC/MDIO can configure all PHY-related registers. See Table 8-1.
- For strap pin 66 SPIQ, a pull-down resistor selects the SPI Client mode for management operation. The recommended pull-down resistor value is 330Ω.
- For strap pin 66 SPIQ, a pull-up resistor selects the MIIM-MDC/MDIO mode for management operation. The recommended pull-up resistor value is 4.7 kΩ.

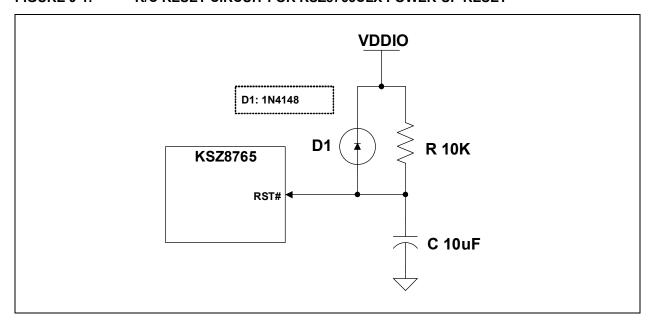
TABLE 8-1: REGISTER CONFIGURATION INTERFACE MODES

Pin Configuration	Serial Bus Configuration		
SPIQ pin 66 pull-down	SPI Client mode		
SPIQ pin 66 pull-up	MIIM-MDC/MDIO mode		

· Select one interface mode of SPI or MIIM-MDC/MDIO based on real application in the design.

Note: Traditionally, the SPI communication protocol uses the terminology, "slave." The equivalent Microchip terminology used in this document is "client."

8.2 Required External Pull-Ups


- The INTR_N (pin 23) requires a 4.7 kΩ external pull-up resistor because this output is an open-drain type.
- The SDA_MDIO (pin 68) requires a 4.7 kΩ external pull-up resistor.

9.0 STARTUP

9.1 Reset Circuit

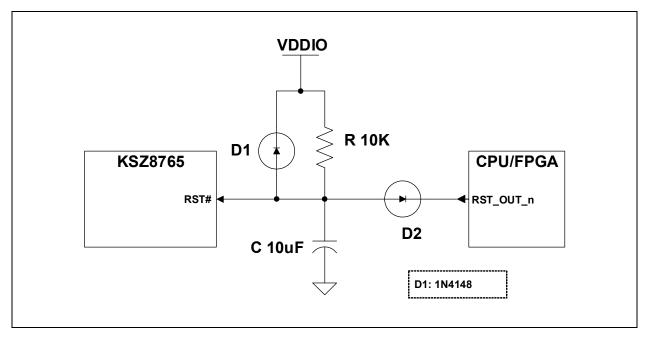
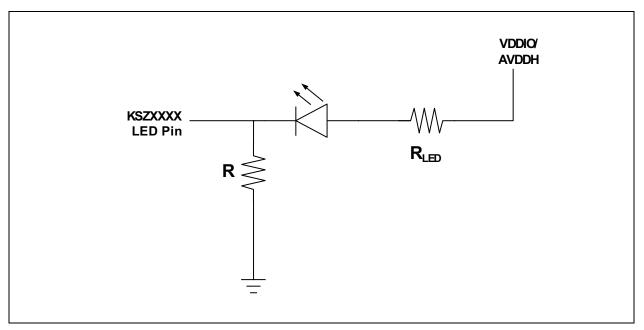

The RST_N (pin 72) is an active-low RESET input. This signal resets all logic and registers within the KSZ8765-CLX. A hardware Reset (RST_N assertion) is required following power-up. Refer to the latest copy of the KSZ8765CLX Data Sheet for reset timing requirements. Figure 9-1 shows a recommended reset circuit for powering up the KSZ8765CLX device when Reset is triggered by the power supply.

FIGURE 9-1: R/C RESET CIRCUIT FOR KSZ8765CLX POWER-UP RESET

Reset circuit interface with CPU/FPGA RESET output pin shows the recommended Reset circuit for applications
where Reset is driven by external CPU or FPGA. The RESET-out pin, RST_OUT_N, from CPU/FPGA provides
the warm Reset after a power-up Reset is done. If the Ethernet device and CPU/FPGA use the same VDDIO voltage, D2 can be removed and both reset pins can be connected directly. See Figure 9-2.

FIGURE 9-2: RESET CIRCUIT INTERFACE WITH CPU/FGA RESET OUTPUT


10.0 CONFIGURATION PINS (STRAPPING OPTIONS)

There are some strap-in pins to help with the KSZ8765CLX configuration after power-up or hardware Reset. The
 KSZ8765CLX Data Sheet has complete details on the operation of strapping pins. The LED strap pin and other
 requirements are shown in the succeeding sections.

10.1 LED Pins as Strap-in Pins

LED pins have internal pull-up resistors in KSZ8765CLX. Generally, an LED pin does not need an external pull-up
resistor because it has an internal pull-up. However, LED Strap-low needs an external pull-down resistor R. See
LED pin Strap-in circuit in Figure 10-1.

Based on the different VDDIO values in the experiment and testing, use the following recommended pull-down resistor R and the current limit resistor R_{LED} values:

- When using 3.3V VDDIO power, use 1 k Ω current limit resistor R_{LED} and 1 k Ω pull-down resistor R to meet V_{IL} specifications. R_{LED} can connect to VDDIO power.
- When using 2.5V VDDIO power, use 1 kΩ current limit resistor R_{LED} and 0.75 kΩ pull-down resistor R to meet V_{IL} specifications. R_{LED} can connect to VDDIO power or AVDDH (VDDAT) power through a ferrite bead.
- When using 1.8V VDDIO power, use 1 kΩ current limit resistor R_{LED} and 0.5 kΩ pull-down resistor R to meet V_{IL} specifications. R_{LED} should connect to AVDDH (VDDAT) power through a ferrite bead.
- There is one alternative solution to using 1.8V VDDIO. Refer to the alternative LED circuit in Figure 10-2.

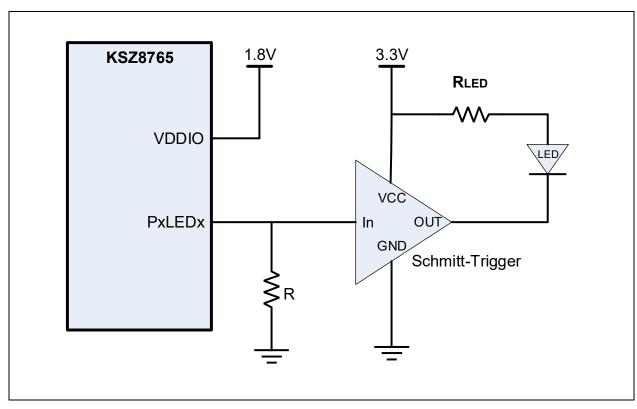


FIGURE 10-2: ALTERNATIVE LED CIRCUIT WITH 1.8V VDDIO

10.2 General Strap-in Pins and Others

• Except LED strap-in pins, the recommended pull-up and pull-down resistors values for strap pins are 4.7 k Ω and 1 k Ω , respectively. Users are highly discouraged from directly executing a pull-up to power and pull-down to ground without pull-up and pull-down resistors.

11.0 MISCELLANEOUS

11.1 ISET Resistor

The ISET pin (pin 77) on the KSZ8765CLX should connect to the system ground through a 12.4 kΩ resistor with a
tolerance of 1.0%. This ISET pin is used to set up critical bias currents for the embedded 10/100 Ethernet physical
devices.

11.2 Other Considerations

- Incorporate an SMD ferrite bead footprint to connect the chassis ground to the system ground. This allows some
 flexibility at EMI testing for different grounding options if leaving the footprint open keeps the two grounds separated. For best performance, short the grounds together with a ferrite bead or a capacitor. Users are required to
 place the capacitor/ferrite bead far away from KSZ8765CLX device in PCB layout placement for better ESD.
- Make sure that enough bulk capacitors (4.7 μF to 22 μF) are incorporated in each power rail.

12.0 HARDWARE CHECKLIST SUMMARY

TABLE 12-1: HARDWARE DESIGN CHECKLIST

Section	Check	Explanation	٧	Notes
Section 2.0, "General Considerations"	Section 2.1, "Required References"	ction 2.1, "Required References" All necessary documents are on hand.		
	Section 2.2, "Pin Check"	The pins match the data sheet.		
	Section 2.3, "Ground"	Verify if the digital ground and the analog ground are tied together. Check if there is a chassis ground for the line-side ground.		
Section 3.0, "Power"	Section 3.0, "Power"	To meet Figure 3-1 requirements, check all power pins of analog 3.3V VDDAT pins, digital VDDIO pins, analog 1.2V VDD12D pins, and analog 1.2V VDD12A pin for the decouple capacitors, bulk capacitors, and ferrite beads.		
Section 4.0, "Ethernet Signals"	Section 4.1, "KSZ8765CLX Fiber Port Connection"	Verify the design and connection based on Figure 4-1, and verify FXSD pin with a resistor divider correctly.		
	Section 4.2, "KSZ8765CLX Copper Port Connection"	Verify if there is no 49.9Ω termination resistors on TX and RX pairs and no power on the magnetics.		
	Section 4.3, "Magnetics Connection at the Chip Side"	Verify if the center taps of the magnetics on the KSZ8765CLX chip side are NOT connected to the VDDAT 3.3V analog power as KSZ8765-CLX is an internal biasing device. The center taps of the magnetics on the chip side should also have two 0.1 μF capacitors to ground individually.		
	Section 4.4, "Magnetics Connection at Line Side of the RJ45 Connector"	Verify if the line side of the magnetics has two 75Ω resistors through a 1000 pF, 2 kV capacitor connected to chassis ground that is also linked to the metal case of the RJ45 on the line side.		
	Section 4.5, "Alternative Termination Selection for RJ45 Connector"	If using smith termination for unused pins 4/5 and 7/8 of the RJ45 connector, check if these pins are terminated to chassis ground through a 1000 pF, 2 kV capacitor.		
	Section 4.6, "Using RJ45 with Integrated LED"	Use RJ45 with integrated LED if the product working environment is not very noisy. Otherwise, use an independent LED solution.		
Section 5.0, "Clock Circuit"	Section 5.1, "Crystal and External Oscillator or Clock Connections"	Verify the usage of 25 MHz maximum ± 50 ppm crystal. The drive level should be about 100 μ W or above (preferably higher). If using a 25 MHz oscillator with maximum ± 50 ppm, it is better to use a 3.3V power oscillator and 3.3V VDDAT for the oscillator power.		
Section 6.0, "Configuration for System Application"	Section 6.1, "Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 GMII"	If uplink Port 5 uses GMII mode, make sure that the configuration strap pins are set correctly.		
	Section 6.2, "Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 RGMII"	If uplink Port 5 uses RGMII mode, make sure that the configuration strap pins are set correctly.		
	Section 6.3, "Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 MII"	If uplink Port 5 uses MII mode, make sure that the configuration strap pins are set correctly.		
	Section 6.4, "Design for Managed 5-Port Switch using Uplink Port 5 GMAC5 RMII™"	If uplink Port 5 uses RMII™ mode, make sure that the configuration strap pins are set correctly.		

TABLE 12-1: HARDWARE DESIGN CHECKLIST (CONTINUED)

Section	Check	Explanation	٧	Notes
Section 7.0, "Digital Interface"	Section 7.1, "Port 5 GMAC5 SW5-GMII/ RGMII/MII/RMII™ Strap Pins for Configura- tion"	If using one mode of GMII/RGMII/MII on Port 5, check or design the configuration correctly based on Table 7-1.		
	Section 7.2, "Port 5 GMAC5 MII Interface"	For Port 5 GMAC5 MII with other end-MII connections, make sure that the input and output connections are correct.		
		If connected between KSZ8765CLX GMAC5 MAC mode MII and external PHY MII, check the connections based on Figure 7-1.		
		If connected between KSZ8765CLX GMAC5 PHY mode MII and MCU MAC MII, check the connections based on Figure 7-2.		
	Section 7.3, "Port 5 GMAC5 RMII™ Interface"	Make sure that the RMII mode strap-in configuration is correct based on Table 7-1.		
	Section 7.3.1, "Port 5 GMAC5 RMII™ Clock Mode"	For Port 5 RMII with other end-RMII connections, make sure that the input and output connections are correct.		
		If connected between KSZ8765CLX GMAC5 RMII Clock mode and MCU RMII Normal mode, check the connections based on Figure 7-3.		
		If connected between KSZ8765CLX GMAC5 RMII Clock mode and external PHY RMII Normal mode, check the connections based on Figure 7-4.		
	Section 7.3.2, "Port 5 MAC5 RMII™ Normal Mode"	For Port 5 RMII with other end RMII connections, make sure that the input and output connections are correct.		
		If connected between KSZ8765CLX GMAC5 RMII Normal mode and MCU RMII Clock mode, check the connections based on Figure 7-5.		
		If connected between KSZ8765CLX GMAC5 RMII Normal mode and external PHY RMII Clock mode, check the connections based on Figure 7-6.		
	Section 7.4, "Port 5 GMAC5 GMII Interface"	For Port 5 GMAC5 GMII with other end GMII connections, make sure that the input and output connections are correct.		
		If connected between KSZ8765CLX GMAC5 GMAC mode GMII and external GPHY GMII, check the connections based on Figure 7-7.		
		If connected between KSZ8765CLX GMAC5 GPHY mode GMII and MCU GMAC GMII, check the connections based on Figure 7-8.		
	Section 7.5, "Port 5 GMAC5 RGMII Interface"	For Port 5 GMAC5 RGMII with other end RGMII connections, make sure that the input and output connections are correct.		
		If connected between KSZ8765CLX GMAC5 RGMII and MCU GMAC RGMII (or external GPHY RGMII), check connections based on Figure 7-9 or Figure 7-10.		
	Section 7.6, "System Consideration for Design with RGMII Interface"	Consider RGMII-ID in RGMII specifications. The SPI access should be design-in if using Port 5 GMAC5 RGMII interface.		
	Section 7.7, "GMII/RGMII/MII/RMII™ Interface Series Terminations"	Check if all drive pins have the series termination resistors for the digital I/O interface.		

TABLE 12-1: HARDWARE DESIGN CHECKLIST (CONTINUED)

TABLE 12-1. HANDWAKE DESIGN OFFICIALIST		(00111111023)		
Section	Check	Explanation	٧	Notes
Section 8.0, "Management Interface" Section 8.1, "Configuration for Management Interface Mode"		Always remember that a pull-down resistor is required on the SPIQ pin 66 when using the SPI mode.		
		Always remember that a pull-up resistor is required on the SPIQ pin 66 when using the MDC/MDIO mode.		
	Section 8.2, "Required External Pull-Ups"	Check if there is a pull-up resistor for the data line of the management interface and the interrupt pin if they are used. Use a 4.7 k Ω pull-up resistor.		
Section 9.0, "Startup"	Section 9.1, "Reset Circuit"	Verify if the R/C reset circuit is used for a power-up reset. A 10 $k\Omega$ resistor and a 10 μ F capacitor are recommended. For the cost-down, the D1 Figure 9-1 and Figure 9-2 can be ignored because the RST_N pin has an internal protection diode. For a warm Reset from CPU/FPGA to KSZ8765CLX, D2 can be removed from Figure 9-2 if the KSZ8765CLX and CPU/FPGA are using the same VDDIO voltage.		
Section 10.0, "Configuration Pins (Strapping Options)"	Section 10.1, "LED Pins as Strap-in Pins"	If using an LED pin to do a strap-in for the different VDDIO design, follow the specified recommended resistor value for the pull-down resistors and the current limit resistor to meet V _{IL} specifications. If the LED strap pin is for pull-up, an external pull-up resistor is unnecessary because KSZ8765CLX LED pins have internal pull-up by default.		
	Section 10.2, "General Strap-in Pins and Others"	It is generally recommended to use 4.7 k Ω pull-up and 1 k Ω pull-down resistors. Avoid pulling up or down to power or ground directly. If not specified, the NC pin should be a no-connect.		
Section 11.0, "Miscellaneous"	Section 11.1, "ISET Resistor"	Check ISET resistor (12.4 kΩ, 1%) without any capacitor in parallel.		
	Section 11.2, "Other Considerations"	Incorporate an SMD footprint (SMD_0805-1210) to connect the chassis ground to the system ground. The SMD footprint should be placed far from the devices in PCB layout.		
		Incorporate sufficient power plane bulk capacitors (4.7 μF to 22 $\mu\text{F})$ for each power rail.		

APPENDIX A: REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction
DS00003729A (11-13-20)	Initial release	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- · Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We
 believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's
 Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual
 property rights.
- · Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we
 are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously
 improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital
 Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for
 relief under that Act.

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-7156-1

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820