
Automotive Compilation Vol. 8 30

Random
Number
Generation
Using AES

Toby Prescott

Use of Random Numbers in
Security Protocols
Random number generation has applications in many areas,
but this article will focus on the use of these numbers in
security protocols. Specifically, the security protocols used
to protect the opening and starting of an automobile will be
examined. While equally important, much of the focus has
been on the choice and implementation of the cryptographic
engine that protects the exchange of information between
the vehicle and key fob used to establish the authenticity
of the owner. Many of these security protocols use a
random number as a way to ensure "freshness" of the
communication. These random numbers are vastly important
for achieving a high level of security, and in many cases
are incorrectly assumed to be easily obtained. There are
numerous examples of security protocols being compromised
not by a direct attack on the encryption itself but instead
by focusing on removing the unpredictability from the
random number generation process. [Mifare.pdf] This article
attempts to bring this critical part of the security system into
full focus and present an effective method for generating
random numbers.

Random Number Generation
Background
Random numbers have been generated in many ways in
order to introduce a needed element of unpredictability.
This can range from being as simple as flipping a coin to more
complicated procedures such as measuring the decay of
radioactive elements. The desired result is that it should be

impossible to predict with any accuracy the next outcome
based on past or present knowledge. Much of the application
of random numbers to security systems is based on Claude E
Shannon’s work with information theory. A general definition
of a random number is that when drawn from a given set of
numbers, the probability of any one number should be equal
to that of all others, in order for it to be truly random.

The process of generating a random number will typically
fall into two distinct categories: True Random Number
Generators (TRNG) and Pseudo-Random Number
Generators (PRNG). Typically, the TRNG is tied to some
physical noise source, ranging from a noisy diode to quantum
noise. PRNG results from the need to produce a random
number in an application where a TRNG is not practical
to implement. The PRNG attempts to achieve a result
sufficiently indistinguishable from TRNG for the application
using the random number. Examples of this would be
measuring the movement of a computer mouse over time or
sampling a high-speed counter each time a button is pressed
by the user. While it is technically possible to manipulate
or control these in such a way as to produce numbers that
are not random, the feasibility of implementing the attack
ensures that these methods of PRNG are sufficient for low-
risk applications. This article focuses on a distinct subset
of PRNG known as Deterministic Random Bit Generators
(DRBG). These are unique in that they are based on the
use of algorithms that are very predictable by nature. While
it is possible to generate good-quality random numbers
using these methods, there are some specific conditions that
must be carefully considered. The recommendations in this
article are based on the National Institute of Standards and
Technology (NIST) publication SP800-90.

© 2011 / www.atmel.com31

Quality of the Random Number

For a generated output to be a high-quality random number,
it must satisfy several criteria. One important requirement
holds that it must not be possible to predict future numbers
based on past performance (prediction resistance). Also, for
a given range of possible numbers the results of the DRBG
should be uniformly distributed. To make it easy to compare
different approaches, the quality of the random number is
typically specified in terms of Entropy (H). The entropy of
a system is a function of the probabilities of the individual
results that are possible. As a result, all evaluation of random
numbers is heavily based in probability and statistical
mathematics. For security applications, the NIST recommends
the use of a minimum level of Entropy (Hmin) dependent
on the application requiring the random number. [SP800-
90revised_March2007.pdf] This Hmin should meet or exceed
the requirements specified for the cryptography level used
in the application. Hmin can be calculated by the following
formula where pmax is the maximum
probability of a single event. This maximum probability
must be characterized or specified for a given system. The
NIST article uses an example based on 4-bit sampling of
a diode with a maximum probability of 0.19462 for two
individual events. The Hmin is then calculated to be 2.38487
for this approach. Please note that the Entropy will always
be equal or less than the number of bits used to generate
the output. The total entropy of a system can be increased
by concatenation. To achieve entropy of 128 bits using the
above example, the diode would need to be sampled 54
times and the resulting values concatenated.

One very easy test that can only be used to determine that
a DRBG is NOT truly random is the visual test [Analysis2005.
pdf]. While this method cannot say that the numbers
generated are high quality, it does give a satisfying indication
that you may be on the correct path. The human eye is
very good at picking out repeated patterns from a graphical
representation. If such a pattern exists, there is a good
probability that a serious weakness exists in the process.
[http://www.boallen.com/random-numbers.html] Figures
1 to 3 show the output of 256, 5000, and 10000 random
numbers using the modified DRBG routine that Atmel
proposes as an option for automotive applications.

For a thorough evaluation of the random number generation
method, the NIST recommends that a true statistical analysis
be performed. They have documented several methods
in SP800-22, and compiled an exhaustive list of possible

Figure 1. 250 Iterations of the DRBG

Figure 2. 5000 Iterations of the DRBG

Figure 3. 10000 Iterations of the DRBG

Hmin = −Log2 (pmax)

Automotive Compilation Vol. 8 32

tests for many possible weaknesses. [SP800-22rev1a.
pdf] In addition, correct interpretation of the test results is
necessary and can be quite challenging to achieve. NIST has
also released a software tool package that can be used to
run many of these tests on the random number generation
method chosen for a given application.

[http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_
software.html]

AES Encryption Introduced

The recommendations from the NIST are very general in
scope and this article will focus only on a small subset from
this document. Included in the many deterministic algorithms
that can be used are a class termed Block Ciphers. The one
Atmel selected is the Advanced Encryption Standard (AES).
This encryption algorithm was the result of an international
competition sponsored by the US Government to create a
modern security engine that leverages the concept of peer
review by remaining completely open source. In 2000 the
AES standard was accepted as the encryption of choice by
the US Government, and remains secure with no known
successful attacks.

AES is considered deterministic because the output is very
predictable given knowledge of inputs such as the plain text
and secret key. Also, like most symmetric block ciphers, AES
is capable of both encoding and decoding using the same
secret key. This property is a very useful function when
transferring information, but when applied to generating
random numbers it causes some limitations that must
be addressed.

So, how is AES used to generate random numbers if the
fundamental structure imposes considerable limitations? One
very important factor applies to most encryption algorithms
in general. For an algorithm to have a high level of security,
the output resulting from one single bit change on the input
should be a large number of bit changes that are evenly
distributed across the entire possible range. This should be
accomplished in a manner that is completely unpredictable
with only knowledge of the input and the output. In essence,
a high level of entropy is present as long as the secret key
remains unknown. The properties lend to a very good starting
point for generating random numbers.

Proposed Method for Generating
Random Numbers Using AES
The following will focus on two main areas in a vehicle with
security protocols that rely on quality random numbers.
Passive Entry/Passive Start and immobilizer systems both
generate random numbers in the vehicle that are critical in
determining the authenticity of a key fob before allowing
access to the vehicle or starting the engine. The process
used to generate these numbers is normally not well
defined in the security protocol, even though it can have
serious implications on the overall security of the vehicle.
Atmel selected AES because this encryption is gaining
popularity in the automotive security area and Atmel is
leveraging the reuse of already present encryption blocks.
While it is not practical to implement the entirety of the NIST
recommendations, the remaining sections attempt to create
a proposed solution that is a modified subset of their main
blocks. The modifications specifically address the challenge of
storing and modifying large amounts of data in non-volatile
memory in an automotive application. It should also be noted
that only the generate function has been implemented, not
the complete support functions, which include instantiate,
reseed, test, and uninstantiate. Figure 4 shows the basic
operation of the modified DRNG generate function.

EEPROM Variables

The basic generate function proposed by Atmel uses
three EEPROM variables. The size of these as well as
the way Atmel suggests using them is modified from
the NIST recommendation because of the data retention
requirements in automotive applications.

It is common practice to use the following two methods for
storing variables in EEPROM. The first is to triplicate copies
for error detection and correction where the same value is
written in three different locations (should not be sequential
addresses) and all three are compared using majority voting
when the value is read out. The second is cell wear leveling
where the value is really an array of locations with a pointer
to the current cell(s) used. Each time the value is written
and read out, the pointer is moved so that the next write
cycle uses a different set of EEPROM cells. It is easy to see
that the two methods combined can require a large amount
of physical memory to store a small number of variables.

With this in mind, the size of the Counter_V variable is set
to 32 bits. This variable is updated each time the generate
function is called. The next variable is the DRBG_Key, which
is a full 128 bits in length. This variable is only updated during

© 2011 / www.atmel.com33

the initialization and reseed portions of our approach, so it
should not require cell wear leveling depending on the reseed
interval used. The third variable is the Reseed_Cntr, which is
also 32 bits in length. This is incremented by one each time.

Inputs to the AES Block

The encryption block requires two different inputs, both sized
to 128 bits. One of the inputs is the secret key (DRBG_Key),
which is loaded in without modification. This value is fixed
between reseed intervals. The other input is the plain text to
be encrypted. This is created by expanding the Counter_V
from 32 bits to a full 128 bits. There are many ways to pad
inputs but in this example the value is simply concatenated
four times. Once these inputs are loaded the AES encryption
process is carried out.

Use of the AES Output

The result of the AES encryption is a 128-bit number. This
is used as the random number output from the generate
function. Many security protocols in car access and security
require a shorter value due to system response requirements.
For example, the random number may only need to be 32
bits in order to increase communication speeds. The proposed
method uses truncation of the right-most bits until the
desired length is reached.

Update Function and Counters

Once the random number is generated, the counters must be
updated in preparation for the next execution of the function.
In this case the NIST recommended update function is also
modified so that it does not update the 128-bit DRBG_Key
variable. If feasible, this is left to the reseed function to
implement in the application. The update function modified
by Atmel is shown in figure 5. The process for updating the
Reseed_Cntr is straightforward by simply incrementing each
time the generate function is executed. To ensure that the
DRBG process is not susceptible to backtracking attacks, the
Counter_V is not simply incremented. Instead the counter is
initially incremented, then padded with the Unique ID of the
vehicle and zeros to a length of 128 bits. The UID could be
the VIN number or a hardware module ID. This is used as the
input to a second AES encryption. The output is truncated to
32 bits and stored as the new Counter_V variable.

Considerations for Ensuring a Quality
Random Number
As mentioned in section 2, the use of a deterministic
algorithm such as AES to generate random numbers
faces some challenges that must be overcome to produce
results that contain sufficient entropy to be used in security
applications. This section looks at some of these aspects and
provides suggestions for further enhancements that can be
made to the system.

CAR

Counter_V Counter_V Counter_V Counter_V

+1

+1 and
Update

Rand # Truncate

Counter_V Is
incremented, updated,
and reprogrammed in

EEPROM

Counter_V
expanded

AES output
used

EEPROM

AES-128 (encr.)

Counter_V (32 bits)

DRBG_Key (128 bits)

Reseed_Cntr (32 bits)

DRBG_Key

Figure 4. Generate Function

Automotive Compilation Vol. 8 34

EEPROM

Counter_V
+1

Truncate

Counter_V + 1
padded

AES output
used

AES-128 (encr.)

Counter_V (32 bits)

DRBG_Key (128 bits)

Reseed_Cntr (32 bits)

DRBG_Key

Counter_V

96 bits (zeros + vehicle UID)

Figure 5. Update Function

Initial Values of the EEPROM

The EEPROM variables that are used to exercise the AES
encryption engine and generate the random number output
have already mentioned. One topic, however, that has
not been covered yet is how these values are set initially.
This falls outside the scope of the article but it is crucial to
convey the importance of the process used to set the initial
state of the DRBG_Key and Counter_V variables. It would
be preferable to use a RNG with very high entropy during
the manufacturing and test process to generate these initial
values. This can be done with specialized equipment, for
example, and transferred along with final configuration data.

Maintaining Secrecy

All of the variables stored in EEPROM should be treated as
a part of the security system and handled appropriately.
Because of the deterministic nature of the AES algorithm, it
is possible to calculate the next sequence of numbers if the
internal state of the variables is known. If it is possible for the
attacker to access these variables in any way, they could
devise an attack on the security protocol that uses these
random numbers without having to "break" the encryption
algorithm that is used. Protecting these variables should
begin with the initialization process, which should ensure
that a "common" or "master" secret key is not used for
all devices.

Use of Reseed Counter

The Reseed_Cntr variable has been included but the use
of this variable has not yet been discussed. As mentioned
previously, the counter value is incremented each time the
generate function is executed. The purpose of this variable is
to send a limit on how many times the generate and update
functions can be used without reseeding the system with
new variables from an external entropy source, preferably
from a TRNG. This provides prediction resistance because it
limits the number of deterministic outputs that are possible. In
the case where all internal state variables are compromised,
it would be possible for the attacker to calculate forward
the random numbers. The use of the reseed counter limits
the usefulness of this in breaking the system. A lower limit
provides stronger resistance but the reseeding process
requires access to a second entropy source.

Other reference citations

[http://www.random.org/randomness/]
[http://www.randomnumber.info/content/Random.htm]

