AVR502: Migration between ATmega165(P) and ATmega325(P)

Features

- · General Porting Considerations
- Memory
- Clock sources
- IO pins

1 Introduction

This application note summarizes the differences between ATmega165(P) and ATmega325(P). For detailed information on the devices refer to the datasheets.

The ATmega165(P) and ATmega325(P) are designed to be a pin and functionality compatible sub family. Because of the differences in memory sizes and other issues mentioned in this document, there might be a need for some minor modifications in the application when porting code between the devices.

8-bit **AVR**® Microcontrollers

Application Note

2 General Porting Considerations

Between the devices described in this application note, some register bits are in different locations within a register. But note that neither registers nor bits have different names, nor are any bits relocated into other registers.

To make the porting process as easy as possible, always refer to registers and bit positions using their defined names. Avoid using absolute addresses and values. In most cases, the register and bit names are unchanged from device to device. When you are porting a design, it is more convenient to include the correct definition file for the new device, rather than manually changing all your addresses and bit values. It is also considered good programming practice to use named references instead of absolute values. Some examples are shown below.

To avoid conflicts with added features and register functionality, never access registers that are marked as reserved. Reserved bits should always be written to zero if accessed. This ensures forward compatibility, and added features will stay in their default states when unused.

3 Memory

The sizes of the memories are the main difference between the ATmega165(P) and ATmega325(P). They are all summarized in Table 1. The alternatives of the boot flash section size vary from part to part. All options are summarized in Table 2. When programming the Flash and EEPROM, the memories are accessed in groups by pages. The different page sizes are listed in Table 3. The time to wait for a programming of an EEPROM page is different on ATmega165(P) compared to the two other devices. Typical programming times are listed in Table 4.

Table 1. Memory sizes

	FLASH [bytes]	SRAM [bytes]	EEPROM [bytes]
ATmega165(P)	16384	1024	512
ATmega325(P)	32768	2048	1024

Table 2. Boot flash section sizes

	BOOTSZ: 11 [words]	BOOTSZ: 10 [words]	BOOTSZ: 01 [words]	BOOTSZ: 00 [words]
ATmega165(P)	128	256	512	1024
ATmega325(P)	256	512	1024	2048

Table 3. Programming page sizes

	FLASH page size [words]	EEPROM page size [bytes]	
ATmega165(P)	64	4	
ATmega325(P)	64	4	

Table 4. Wait times when programming EEPROM

	Typical programming time	
ATmega165(P)	8.5 ms	
ATmega325(P)	3.3 ms	

4 Clock sources

The internal RC oscillator in ATmega325(P) is based on a different design then ATmega165(P). The functionally is however similar, but the accuracy is higher on ATmega325(P) than on ATmega165(P). Refer to the datasheets for information on calibration of the oscillators.

5 IO pins

ATmega325(P) has an option to disable the external reset feature. The /RESET pin then becomes an input only IO pin. The reset disable feature is not available on ATmega165(P).

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0

Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123

38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.