Dual General Purpose Transistors **NPN Duals** # BC846BDW1, BC847BDW1, BC848CDW1 These transistors are designed for general purpose amplifier applications. They are housed in the SOT-363/SC-88 which is designed for low power surface mount applications. #### Features - S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant* #### **MAXIMUM RATINGS** | Rating | Symbol | BC846 | BC847 | BC848 | Unit | |-----------------------------------|------------------|-------|-------|-------|------| | Collector - Emitter Voltage | V _{CEO} | 65 | 45 | 30 | V | | Collector - Base Voltage | V _{CBO} | 80 | 50 | 30 | V | | Emitter - Base Voltage | V _{EBO} | 6.0 | 6.0 | 5.0 | V | | Collector Current –
Continuous | I _C | 100 | 100 | 100 | mAdc | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------------------------|-------------------|----------| | Total Device Dissipation Per Device FR–5 Board (Note 1) T _A = 25°C Derate Above 25°C | P _D | 380
250
3.0 | mW
mW | | Thermal Resistance,
Junction to Ambient | $R_{\theta JA}$ | 328 | °C/W | | Junction and Storage Temperature Range | T _J , T _{stg} | -55 to +150 | °C | 1. FR-5 = 1.0 x 0.75 x 0.062 in SOT-363/SC-88 CASE 419B STYLE 1 #### **MARKING DIAGRAM** 1x = Specific Device Code x = B, F, G, LM = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 10. 1 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** ($T_A = 25$ °C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-----------------------|----------------------|--------------------------|----------------------|----------| | OFF CHARACTERISTICS | <u> </u> | | | I. | | | Collector – Emitter Breakdown Voltage (I _C = 10 mA) BC846 BC847 BC848 | V _(BR) CEO | 65
45
30 | -
-
- | -
-
- | V | | Collector – Emitter Breakdown Voltage (I _C = 10 μA, V _{EB} = 0) BC846 BC847 BC848 | V _{(BR)CES} | 80
50
30 | -
-
- | -
-
- | V | | Collector – Base Breakdown Voltage (I _C = 10 μA) BC846 BC847 BC848 | V _{(BR)CBO} | 80
50
30 | -
-
- | -
-
- | V | | Emitter – Base Breakdown Voltage (I _E = 1.0 μA) BC846 BC847 BC848 | V _{(BR)EBO} | 6.0
6.0
5.0 | -
-
- | -
-
- | V | | Collector Cutoff Current
(V _{CB} = 30 V)
(V _{CB} = 30 V, T _A = 150°C) | I _{CBO} | -
- | -
- | 15
5.0 | nA
μA | | ON CHARACTERISTICS | | - | | | | | DC Current Gain $ \begin{aligned} &(I_C = 10 \; \mu\text{A, V}_{CE} = 5.0 \; \text{V}) \\ & \text{BC846B, BC847B} \\ & \text{BC847C, BC848C} \\ &(I_C = 2.0 \; \text{mA, V}_{CE} = 5.0 \; \text{V}) \\ & \text{BC846B, BC847B} \\ & \text{BC847C, BC848C} \end{aligned} $ | h _{FE} | -
-
200
420 | 150
270
290
520 | -
-
450
800 | - | | Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$) | V _{CE(sat)} | | -
- | 0.25
0.6 | V | | Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA) | V _{BE(sat)} | | 0.7
0.9 | -
- | V | | Base – Emitter Voltage (I_C = 2.0 mA, V_{CE} = 5.0 V) (I_C = 10 mA, V_{CE} = 5.0 V) | V _{BE(on)} | 580
- | 660
- | 700
770 | mV | | SMALL-SIGNAL CHARACTERISTICS | • | | • | | • | | Current – Gain – Bandwidth Product
(I _C = 10 mA, V _{CE} = 5.0 Vdc, f = 100 MHz) | f _T | 100 | _ | _ | MHz | | Output Capacitance
(V _{CB} = 10 V, f = 1.0 MHz) | C _{obo} | - | - | 4.5 | pF | | Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 Vdc, R _S = 2.0 k Ω ,f = 1.0 kHz, BW = 200 Hz) | NF | - | _ | 10 | dB | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. #### **TYPICAL CHARACTERISTICS - BC846BDW1** Figure 1. DC Current Gain at V_{CE} = 5 V Figure 2. DC Current Gain at V_{CE} = 10 V Figure 3. $V_{CE(sat)}$ at $I_C/I_B = 10$ Figure 4. $V_{CE(sat)}$ at $I_C/I_B = 20$ Figure 5. $V_{BE(sat)}$ at $I_C/I_B = 10$ Figure 6. $V_{BE(sat)}$ at $I_C/I_B = 20$ ## **TYPICAL CHARACTERISTICS - BC846BDW1** Figure 7. $V_{BE(on)}$ at $V_{CE} = 5 \text{ V}$ Figure 8. Current - Gain - Bandwidth Product Figure 9. Capacitances Figure 10. Collector Saturation Region Figure 11. Base-Emitter Temperature Coefficient #### **TYPICAL CHARACTERISTICS - BC847BDW1** #### **TYPICAL CHARACTERISTICS - BC847BDW1** Figure 18. V_{BE(on)} at V_{CE} = 5 V Figure 20. Capacitances Figure 21. Collector Saturation Region **Product** Figure 22. Base-Emitter Temperature Coefficient #### **TYPICAL CHARACTERISTICS - BC848CDW1** Figure 23. DC Current Gain at $V_{CE} = 5 \text{ V}$ Figure 24. DC Current Gain at V_{CE} = 10 V Figure 25. V_{CE} at $I_C/I_B = 10$ Figure 26. V_{CE} at $I_C/I_B = 20$ Figure 27. $V_{BE(sat)}$ at $I_C/I_B = 10$ Figure 28. $V_{BE(sat)}$ at $I_C/I_B = 20$ #### **TYPICAL CHARACTERISTICS - BC848CDW1** Figure 29. $V_{BE(on)}$ at $V_{CE} = 5 \text{ V}$ Figure 30. Current – Gain – Bandwidth Product Figure 31. Capacitances Figure 32. Collector Saturation Region Figure 33. Base-Emitter Temperature Coefficient Figure 34. Thermal Response Figure 35. Active Region Safe Operating Area The safe operating area curves indicate I_C–V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve. The data of Figure 35 is based upon $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 34. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown. #### **ORDERING INFORMATION** | Device | Markings | Package | Shipping [†] | |------------------|----------|----------------------|-----------------------| | BC846BDW1T1G | 1B | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | SBC846BDW1T1G* | 1B | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | BC847BDW1T1G | 1F | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | SBC847BDW1T1G* | 1F | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | BC847BDW1T3G | 1F | SOT-363
(Pb-Free) | 10,000 / Tape & Reel | | SBC847BDW1T3G* | 1F | SOT-363
(Pb-Free) | 10,000 / Tape & Reel | | NSVBC847BDW1T2G* | 1F | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | BC847CDW1T1G | 1G | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | SBC847CDW1T1G* | 1G | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | | BC848CDW1T1G | 1L | SOT-363
(Pb-Free) | 3,000 / Tape & Reel | ## **DISCONTINUED** (Note 2) | NSVBC848CDW1T1G* | 1L | SOT-363 | 3,000 / Tape & Reel | |------------------|----|-----------|---------------------| | | | (Pb-Free) | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}S and NSV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable. ^{2.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com. E1 6X 0.30 - e В ### SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z** **DATE 18 APR 2024** #### NOTES: - DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. - ALL DIMENSION ARE IN MILLIMETERS. - DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. - DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. - DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. DIM MIN TOP VIEW ∆aaa H A−B <u></u> БЬБ С ⊕ ddd M C A−B D 6X 0.66 2.50 # **GENERIC MARKING DIAGRAM*** | А | | | 1.10 | |-----|----------------|----------|------| | A1 | 0.00 | | 0.10 | | A2 | 0.70 | 0.90 | 1.00 | | Ь | 0.15 | 0.20 | 0.25 | | С | 0.08 | 0.15 | 0.22 | | D | : | 2.00 BSC | ; | | E | 2.10 BSC | | | | E1 | 1.25 BSC | | | | е | 0.65 BSC | | | | L | 0.26 0.36 0.46 | | | | L2 | 0.15 BSC | | | | aaa | 0.15 | | | | bbb | 0.30 | | | | ccc | 0.10 | | | | ddd | 0.10 | | | | | | | | MILLIMETERS NOM RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. XXX = Specific Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) - *Date Code orientation and/or position may vary depending upon manufacturing location. - *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. # **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|----------------------------|---|-------------|--| | DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.65 | 5P | PAGE 1 OF 2 | | onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ## SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z **DATE 18 APR 2024** | STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 | STYLE 2:
CANCELLED | STYLE 3:
CANCELLED | STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE | STYLE 5:
PIN 1. ANODE
2. ANODE
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE | STYLE 6:
PIN 1. ANODE 2
2. N/C
3. CATHODE 1
4. ANODE 1
5. N/C
6. CATHODE 2 | |--|--|---|---|---|--| | STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2 | STYLE 8:
CANCELLED | STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2 | STYLE 10:
PIN 1. SOURCE 2
2. SOURCE 1
3. GATE 1
4. DRAIN 1
5. DRAIN 2
6. GATE 2 | STYLE 11:
PIN 1. CATHODE 2
2. CATHODE 2
3. ANODE 1
4. CATHODE 1
5. CATHODE 1
6. ANODE 2 | STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2 | | STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE | STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC | STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1 | STYLE 16:
PIN 1. BASE 1
2. EMITTER 2
3. COLLECTOR 2
4. BASE 2
5. EMITTER 1
6. COLLECTOR 1 | STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1 | STYLE 18:
PIN 1. VIN1
2. VCC
3. VOUT2
4. VIN2
5. GND
6. VOUT1 | | STYLE 19:
PIN 1. I OUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF | STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR | STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1 | STYLE 22:
PIN 1. D1 (i)
2. GND
3. D2 (i)
4. D2 (c)
5. VBUS
6. D1 (c) | STYLE 23:
PIN 1. Vn
2. CH1
3. Vp
4. N/C
5. CH2
6. N/C | STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE | | STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1 | STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1 | STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2 | STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN | STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE | STYLE 30:
PIN 1. SOURCE 1
2. DRAIN 2
3. DRAIN 2
4. SOURCE 2
5. GATE 1
6. DRAIN 1 | Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. | DOCUMENT NUMBER: | 98ASB42985B Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|---|--|-------------| | DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.65P | | PAGE 2 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales