PNP RF Transistor MMBTH81 This device is designed for general RF amplifier and mixer applications to 250 MHz with collector currents in the 1.0 mA to 30 mA range. Sourced from Process 75. #### **Features** - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant - NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable ## **MAXIMUM RATINGS** (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Units | |---|-----------------------------------|-------------|-------| | Collector - Emitter Voltage | V _{CEO} | 20 | V | | Collector - Base Voltage | V _{CBO} | 20 | V | | Emitter - Base Voltage | V _{EBO} | 3.0 | V | | Collector Current - Continuous | I _C | 50 | mA | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | #### **THERMAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | Symbol | Max | Unit | |--|-----------------|------------|-------------| | Total Device Dissipation Derate above 25°C | P _D | 225
1.8 | mW
mW/°C | | Thermal Resistance, Junction to Ambient | $R_{\theta JA}$ | 556 | °C/W | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Device mounted on FR-4 PCB $1.6 \times 1.6 \times 0.06$ in. - 2. These ratings are based on a maximum junction temperature of $150\,^{\circ}$ C. - These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. 1 4. All voltages (V) and currents (A) are negative polarity for PNP transistors. SOT-23 CASE 318-08 STYLE 6 ## **MARKING DIAGRAM** 3D = Specific Device Code M = Date Code* *Date Code orientation and/or overbar may vary depending upon manufacturing location. #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. #### MMBTH81 ## **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Symbol | Parameter | Test Conditions | Min | Max | Units | | |------------------------------|--|--|-----|------|-------|--| | OFF CHARA | OFF CHARACTERISTICS | | | | | | | V _{(BR)CEO} | Collector - Emitter Breakdown Voltage (Note 5) | I _C = 1.0 mA, I _B = 0 | 20 | | V | | | V _{(BR)CBO} | Collector - Base Breakdown Voltage | $I_C = 10 \mu A, I_E = 0$ | 20 | | V | | | V _{(BR)EBO} | Emitter - Base Breakdown Voltage | $I_E = 10 \mu A, I_C = 0$ | 3.0 | | V | | | I _{CBO} | Collector Cutoff Current | V _{CB} = 10 V, I _E = 0 | | 100 | nA | | | I _{EBO} | Emitter Cutoff Current | V _{EB} = 2.0 V, I _C = 0 | | 100 | nA | | | ON CHARAC | ON CHARACTERISTICS | | | | | | | h _{FE} | DC Current Gain | $I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$ | 60 | | | | | V _{CE(sat)} | Collector - Emitter Saturation Voltage | $I_C = 5.0 \text{ mA}, I_B = 0.5 \text{ mA}$ | | 0.5 | V | | | V _{BE(on)} | Base - Emitter On Voltage | I _C = 5.0 mA, V _{CE} = 10 V | | 0.9 | V | | | SMALL SIGNAL CHARACTERISTICS | | | | | | | | f _T | Current Gain - Bandwidth Product | $I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 100 \text{ MHz}$ | 600 | | MHz | | | C _{cb} | Collector-Base Capacitance | V _{CB} = 10 V, I _E = 0, f = 1.0 MHz | | 0.85 | pF | | | C _{ce} | Collector Emitter Capacitance | V _{CB} = 10 V, I _B = 0, f = 1.0 MHz | | 0.65 | pF | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%. ## **SPICE MODEL** PNP(Is=10f Xti=3 Eg=1.11 Vaf=100 Bf=133.8 Ise=1.678p Ne=2.159 Ikf=.1658 Nk=.901 Xtb=1.5 Var=100 Br=1 Isc=9.519n Nc=3.88 Ikr=5.813 Rc=7.838 Cjc=2.81p Mjc=.1615 Vjc=.8282 Fc=.5 Cje=2.695p Mje=.3214 Vje=.7026 Tr=11.32n Tf=97.83p Itf=69.29 Xtf=599u Vtf=10) ## **ORDERING INFORMATION** | Device | Specific Marking Code | Package | Shipping [†] | |-----------------|-----------------------|---------------------|-----------------------| | NSVMMBTH81LT1G* | 3D | SOT-23
(Pb-Free) | 3,000 / Tape & Reel | | NSVMMBTH81LT3G* | 3D | SOT-23
(Pb-Free) | 10,000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable. #### MMBTH81 #### **TYPICAL CHARACTERISTICS** Figure 1. DC Current Gain vs. Collector Current Figure 2. Collector Saturation Voltage vs. Collector Current 100 I_{CES} (6 V) I_{CES} (3 V 150 Figure 3. Base-Emitter Saturation Voltage vs. Collector Current 2.00 1.80 1.60 CAPACITANCE (pF) 1.40 C_{ibo} 1.20 1.00 C_{obo} 0.80 0.60 2 5 6 10 0 4 **Collector Current** Figure 5. Collector Reverse Current vs. Ambient Temperature TA, AMBIENT TEMPERATURE (°C) 100 75 I_{CES}, COLLECTOR REVERSE CURRENT (nA) 0.60 0.50 0.40 0.30 0.20 0.10 0.00 Figure 6. Input /Output Capacitance vs. Reverse Bias Voltage REVERSE BIAS VOLTAGE (V) **MILLIMETERS** MIN 0.89 0.01 0.37 0.08 2.80 1.20 1.78 0.30 0.35 2.10 O° NOM 1.00 0.06 0.44 0.14 2.90 1.30 1.90 0.43 0.54 2.40 ___ #### SOT-23 (TO-236) 2.90x1.30x1.00 1.90P **CASE 318 ISSUE AU** **DATE 14 AUG 2024** MAX 1.11 0.10 0.50 0.20 3.04 1.40 2.04 0.55 0.69 2.64 10° DIM Α Α1 b С D Ε е L L1 HE Τ - DIMENSIONING AND TOLERANCING 1. PER ASME Y14.5M, 2018. CONTROLLING DIMENSIONS: - MILLIMETERS. - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE - BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. # **GENERIC MARKING DIAGRAM*** XXX = Specific Device Code = Date Code = Pb-Free Package * For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42226B | 26B Electronic versions are uncontrolled except when accessed directly from the Document Rep
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------------------|---|-------------|--| | DESCRIPTION: | SOT-23 (TO-236) 2.90x1.30x1.00 1.90P | | PAGE 1 OF 2 | | onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking. # SOT-23 (TO-236) 2.90x1.30x1.00 1.90P CASE 318 ISSUE AU DATE 14 AUG 2024 | STYLE 1 THRU 5:
CANCELLED | STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR | STYLE 7:
PIN 1. EMITTER
2. BASE
3. COLLECTOR | STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE | 1 | | |---|---|---|--|------------------|---| | STYLE 9: | STYLE 10: | STYLE 11: | STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE | STYLE 13: | STYLE 14: | | PIN 1. ANODE | PIN 1. DRAIN | PIN 1. ANODE | | PIN 1. SOURCE | PIN 1. CATHODE | | 2. ANODE | 2. SOURCE | 2. CATHODE | | 2. DRAIN | 2. GATE | | 3. CATHODE | 3. GATE | 3. CATHODE-ANODE | | 3. GATE | 3. ANODE | | STYLE 15: | STYLE 16: | STYLE 17: | STYLE 18: | STYLE 19: | STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE | | PIN 1. GATE | PIN 1. ANODE | PIN 1. NO CONNECTION | PIN 1. NO CONNECTION | N PIN 1. CATHODE | | | 2. CATHODE | 2. CATHODE | 2. ANODE | 2. CATHODE | 2. ANODE | | | 3. ANODE | 3. CATHODE | 3. CATHODE | 3. ANODE | 3. CATHODE-ANODI | | | STYLE 21: | STYLE 22: | STYLE 23: | STYLE 24: | STYLE 25: | STYLE 26: | | PIN 1. GATE | PIN 1. RETURN | PIN 1. ANODE | PIN 1. GATE | PIN 1. ANODE | PIN 1. CATHODE | | 2. SOURCE | 2. OUTPUT | 2. ANODE | 2. DRAIN | 2. CATHODE | 2. ANODE | | 3. DRAIN | 3. INPUT | 3. CATHODE | 3. SOURCE | 3. GATE | 3. NO CONNECTION | | STYLE 27:
PIN 1. CATHODE
2. CATHODE
3. CATHODE | STYLE 28:
PIN 1. ANODE
2. ANODE
3. ANODE | | | | | | DOCUMENT NUMBER: | 98ASB42226B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------------------|---|-------------|--| | DESCRIPTION: | SOT-23 (TO-236) 2.90x1.30x1.00 1.90P | | PAGE 2 OF 2 | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales