High Voltage, High Current Darlington Transistor Arrays The seven NPN Darlington connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 500 mA permit them to drive incandescent lamps. The MC1413, B with a 2.7 k Ω series input resistor is well suited for systems utilizing a 5.0 V TTL or CMOS Logic. #### **Features** - Pb-Free Packages are Available* - NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes Figure 1. Representative Schematic Diagram Figure 2. PIN CONNECTIONS ## ON Semiconductor® http://onsemi.com PDIP-16 P SUFFIX CASE 648 SOIC-16 D SUFFIX CASE 751B #### ORDERING INFORMATION | Device | Package | Shipping [†] | |--------------|----------------------|-----------------------| | MC1413D | SOIC-16 | 48 Units/Rail | | MC1413DG | SOIC-16
(Pb-Free) | 48 Units/Tube | | MC1413DR2 | SOIC-16 | 2500 Tape & Reel | | MC1413DR2G | SOIC-16
(Pb-Free) | 2500 Tape & Reel | | MC1413P | PDIP-16 | 25 Units/Rail | | MC1413PG | PDIP-16
(Pb-Free) | 25 Units/Rail | | MC1413BD | SOIC-16 | 48 Units/Rail | | MC1413BDG | SOIC-16
(Pb-Free) | 48 Units/Rail | | MC1413BDR2 | SOIC-16 | 2500 Tape & Reel | | MC1413BDR2G | SOIC-16
(Pb-Free) | 2500 Tape & Reel | | MC1413BP | PDIP-16 | 25 Units/Rail | | MC1413BPG | PDIP-16
(Pb-Free) | 25 Units/Rail | | NCV1413BDR2 | SOIC-16 | 2500 Tape & Reel | | NCV1413BDR2G | SOIC-16
(Pb-Free) | 2500 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 5 of this data sheet. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. **MAXIMUM RATINGS** ($T_A = 25^{\circ}C$, and rating apply to any one device in the package, unless otherwise noted.) | Rating | Symbol | Value | Unit | |--|------------------|---|------| | Output Voltage | Vo | 50 | V | | Input Voltage | VI | 30 | V | | Collector Current – Continuous | I _C | 500 | mA | | Base Current – Continuous | Ι _Β | 25 | mA | | Operating Ambient Temperature Range
MC1413
MC1413B
NCV1413B | T _A | -20 to +85
-40 to +85
-40 to +125 | ů | | Storage Temperature Range | T _{stg} | -55 to +150 | °C | | Junction Temperature | TJ | 150 | °C | | Thermal Resistance, Junction-to-Ambient Case 648, P Suffix Case 751B, D Suffix | $R_{ heta JA}$ | 67
100 | °C/W | | Thermal Resistance, Junction-to-Case Case 648, P Suffix Case 751B, D Suffix | $R_{ heta JC}$ | 22
20 | °C/W | | Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM) Charged Device Model (CDM) | ESD | 2000
400
1500 | V | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. ## **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$, unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|------------------------|-------------|---------------------|-------------------|------| | Output Leakage Current $ (V_O = 50 \text{ V}, T_A = +85^{\circ}\text{C}) $ All Type $ (V_O = 50 \text{ V}, T_A = +25^{\circ}\text{C}) $ All Type | | -
- | -
- | 100
50 | μΑ | | | es | -
-
- | 1.1
0.95
0.85 | 1.6
1.3
1.1 | V | | Input Current – On Condition (V _I = 3.85 V) MC1413, | B I _{I(on)} | _ | 0.93 | 1.35 | mA | | | В | -
-
- | -
-
- | 2.4
2.7
3.0 | V | | Input Current – Off Condition All Type $(I_C = 500 \ \mu A, T_A = 85^{\circ}C)$ | es I _{I(off)} | 50 | 100 | _ | μΑ | | DC Current Gain ($V_{CE} = 2.0 \text{ V}, I_{C} = 350 \text{ mA}$) | h _{FE} | 1000 | - | _ | - | | Input Capacitance | C _I | - | 15 | 30 | pF | | Turn–On Delay Time
(50% E _I to 50% E _O) | t _{on} | _ | 0.25 | 1.0 | μS | | Turn-Off Delay Time
(50% E _I to 50% E _O) | t _{off} | - | 0.25 | 1.0 | μs | | Clamp Diode Leakage Current $T_A = +25^{\circ}$ $(V_R = 50 \text{ V})$ $T_A = +85^{\circ}$ | | _
_ | -
- | 50
100 | μΑ | | Clamp Diode Forward Voltage
(I _F = 350 mA) | V _F | _ | 1.5 | 2.0 | V | NOTE: NCV1413B T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. ## TYPICAL PERFORMANCE CURVES - T_A = 25°C 400 All Types — Al Figure 3. Output Current versus Input Voltage **Figure 4. Output Current versus Input Current** **Figure 5. Typical Output Characteristics** Figure 6. Input Characteristics - MC1413, B Figure 7. Maximum Collector Current versus Duty Cycle (and Number of Drivers in Use) ## **MARKING DIAGRAMS** PDIP-16 **P SUFFIX CASE 648** SOIC-16 **D SUFFIX CASE 751B** = Assembly Location WL = Wafer Lot YY, Y = Year WW = Work Week = Pb-Free Package $| \oplus | 0.010 \, \text{M} | \, \text{C} | \, \text{A} \, \text{M} | \, \text{B} \, \text{M}$ PDIP-16 NOTE 6 **DATE 22 APR 2015** #### NOTES - DTES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCHES. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH. DIMENSION E1 SMEASURED AT A POINT 0.015 BELOW DATUM. - DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR - TO DATUM C. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE - DIMENSION BY IS MEASURED AT THE LEAD TIFS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE | | INCHES | | MILLIM | ETERS | |-----|--------|-------|--------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 0.210 | | 5.33 | | A1 | 0.015 | | 0.38 | | | A2 | 0.115 | 0.195 | 2.92 | 4.95 | | b | 0.014 | 0.022 | 0.35 | 0.56 | | b2 | 0.060 | TYP | 1.52 | TYP | | С | 0.008 | 0.014 | 0.20 | 0.36 | | D | 0.735 | 0.775 | 18.67 | 19.69 | | D1 | 0.005 | | 0.13 | | | E | 0.300 | 0.325 | 7.62 | 8.26 | | E1 | 0.240 | 0.280 | 6.10 | 7.11 | | е | 0.100 | BSC | 2.54 | BSC | | eB | | 0.430 | | 10.92 | | L | 0.115 | 0.150 | 2.92 | 3.81 | | M | | 10° | | 10° | ## **GENERIC** MARKING DIAGRAM* XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot YY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1 | 1: | STYLE 2 | : | |---------|---------|---------|--------------| | PIN 1. | CATHODE | PIN 1. | COMMON DRAIN | | 2. | CATHODE | 2. | COMMON DRAIN | | 3. | CATHODE | 3. | COMMON DRAIN | | 4. | CATHODE | 4. | COMMON DRAIN | | 5. | CATHODE | 5. | COMMON DRAIN | | 6. | CATHODE | 6. | COMMON DRAIN | | 7. | CATHODE | 7. | COMMON DRAIN | | 8. | CATHODE | 8. | COMMON DRAIN | | 9. | ANODE | 9. | GATE | | 10. | ANODE | 10. | SOURCE | | 11. | ANODE | 11. | GATE | | 12. | ANODE | 12. | SOURCE | | 13. | ANODE | 13. | GATE | | 14. | ANODE | 14. | SOURCE | | 15. | ANODE | 15. | GATE | | 16. | ANODE | 16. | SOURCE | **SIDE VIEW** | DOCUMENT NUMBER: | 98ASB42431B | Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|---|-------------|--|--| | DESCRIPTION: | PDIP-16 | | PAGE 1 OF 1 | | | onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ### SOIC-16 9.90x3.90x1.37 1.27P CASE 751B ISSUE M **DATE 18 OCT 2024** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. - 2. DIMENSION IN MILLIMETERS. ANGLE IN DEGREES. - 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15mm PER SIDE. - 5. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIM | ETERS | | | | |---------|----------|----------|----------|--|--| | DIM | MIN | NOM | MAX | | | | А | 1.35 | 1.55 | 1.75 | | | | A1 | 0.10 | 0.18 | 0.25 | | | | A2 | 1.25 | 1.37 | 1.50 | | | | b | 0.35 | 0.42 | 0.49 | | | | С | 0.19 | 0.22 | 0.25 | | | | D | | 9.90 BSC | | | | | E | | 6.00 BSC | | | | | E1 | 3.90 BSC | | | | | | е | | 1.27 BSC | | | | | h | 0.25 | | 0.50 | | | | L | 0.40 | 0.83 | 1.25 | | | | L1 | | 1.05 REF | | | | | Θ | 0, | | 7* | | | | TOLERAN | CE OF FC | RM AND | POSITION | | | | aaa | | 0.10 | | | | | bbb | 0.20 | | | | | | ccc | | 0.10 | | | | | ddd | | 0.25 | | | | | eee | | 0.10 | | | | #### RECOMMENDED MOUNTING FOOTPRINT *FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE onsemi SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|--------------------------|--|-------------|--|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.37 1 | .27P | PAGE 1 OF 2 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ## **SOIC-16 9.90x3.90x1.37 1.27P** CASE 751B ISSUE M **DATE 18 OCT 2024** ## GENERIC MARKING DIAGRAM* XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot Y = Year WW = Work Week G = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1: | | STYLE 2: | | STYLE 3: | S | STYLE 4: | | |---|---|--|---|--|---|----------|-------------------| | PIN 1. | COLLECTOR | PIN 1. | CATHODE | PIN 1. | COLLECTOR, DYE #1 | PIN 1. | COLLECTOR, DYE #1 | | 2. | BASE | 2. | ANODE | 2. | BASE, #1 | 2. | COLLECTOR, #1 | | 3. | EMITTER | 3. | NO CONNECTION | 3. | EMITTER, #1 | 3. | COLLECTOR, #2 | | 4. | NO CONNECTION | 4. | CATHODE | 4. | COLLECTOR, #1 | 4. | COLLECTOR, #2 | | 5. | EMITTER | 5. | CATHODE | 5. | COLLECTOR, #2 | 5. | COLLECTOR, #3 | | 6. | BASE | 6. | NO CONNECTION | 6. | BASE, #2 | 6. | COLLECTOR, #3 | | 7. | COLLECTOR | 7. | ANODE | 7. | EMITTER, #2 | 7. | COLLECTOR, #4 | | 8. | COLLECTOR | 8. | CATHODE | 8. | COLLECTOR, #2 | 8. | COLLECTOR, #4 | | 9. | BASE | 9. | CATHODE | 9. | COLLECTOR, #3 | 9. | BASE, #4 | | 10. | EMITTER | 10. | ANODE | 10. | BASE, #3 | 10. | EMITTER, #4 | | 11. | NO CONNECTION | 11. | NO CONNECTION | 11. | | 11. | | | | EMITTER | 12. | CATHODE | 12. | | 12. | | | 13. | | 13. | CATHODE | 13. | COLLECTOR, #4 | 13. | | | 14. | COLLECTOR | 14. | NO CONNECTION | 14. | BASE, #4 | 14. | | | | EMITTER | 15. | ANODE | 15. | EMITTER, #4 | 15. | | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | STYLE 5: | | STYLE 6: | | STYLE 7: | | | | | STYLE 5:
PIN 1. | DRAIN, DYE #1 | STYLE 6:
PIN 1. | | STYLE 7:
PIN 1. | SOURCE N-CH | | | | | DRAIN, DYE #1
DRAIN, #1 | | CATHODE | | SOURCE N-CH
COMMON DRAIN (OUTPUT) | ı | | | PIN 1. | , | PIN 1.
2.
3. | CATHODE
CATHODE | PIN 1. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2. | DRAIN, #1 | PIN 1.
2.
3. | CATHODE
CATHODE
CATHODE | PIN 1.
2. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH | | | | PIN 1.
2.
3. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3 | PIN 1.
2.
3.
4.
5. | CATHODE
CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4.
5. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3 | PIN 1.
2.
3.
4.
5. | CATHODE
CATHODE
CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4.
5. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4 | PIN 1.
2.
3.
4.
5.
6. | CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE | PIN 1.
2.
3.
4.
5.
6. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6.
7. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4 | PIN 1.
2.
3.
4.
5.
6.
7. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE | PIN 1.
2.
3.
4.
5.
6.
7. | COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P-CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE P-CH | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4
GATE, #4 | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
ANODE | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 SOURCE, #4 | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GRAIE, #4 SOURCE, #4 GATE, #3 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GOTE, #3 SOURCE, #3 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 SOURCE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 SOURCE, #2 SOURCE, #2 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) CATE N-CH COMMON DRAIN (OUTPUT) | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) GATE N-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) | | | | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 SOURCE, #2 SOURCE, #2 | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE | PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) GATE P-CH COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) COMMON DRAIN (OUTPUT) SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT) CATE N-CH COMMON DRAIN (OUTPUT) | | | | DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------------|--|-------------|--| | DESCRIPTION: | SOIC-16 9.90X3.90X1.37 1 | .27P | PAGE 2 OF 2 | | onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales